23 research outputs found

    Pooling of coronavirus tests under unknown prevalence

    Get PDF
    Diagnostic testing for the novel coronavirus is an important tool to fight the coronavirus disease (Covid-19) pandemic. However, testing capacities are limited. A modified testing protocol, whereby a number of probes are 'pooled' (i.e. grouped), is known to increase the capacity for testing. Here, we model pooled testing with a double-average model, which we think to be close to reality for Covid-19 testing. The optimal pool size and the effect of test errors are considered. The results show that the best pool size is three to five, under reasonable assumptions. Pool testing even reduces the number of false positives in the absence of dilution effects

    Investigating APOE, APP-Aβ metabolism genes and Alzheimer’s disease GWAS hits in brain small vessel ischemic disease

    Get PDF
    Alzheimer’s disease and small vessel ischemic disease frequently co-exist in the aging brain. However, pathogenic links between these 2 disorders are yet to be identified. Therefore we used Taqman genotyping, exome and RNA sequencing to investigate Alzheimer’s disease known pathogenic variants and pathways: APOE ε4 allele, APP-Aβ metabolism and late-onset Alzheimer’s disease main genome-wide association loci (APOE, BIN1, CD33, MS4A6A, CD2AP, PICALM, CLU, CR1, EPHA1, ABCA7) in 96 early-onset small vessel ischemic disease Caucasian patients and 368 elderly neuropathologically proven controls (HEX database) and in a mouse model of cerebral hypoperfusion. Only a minority of patients (29%) carried APOE ε4 allele. We did not detect any pathogenic mutation in APP, PSEN1 and PSEN2 and report a burden of truncating mutations in APP-Aß degradation genes. The single-variant association test identified 3 common variants with a likely protective effect on small vessel ischemic disease (0.54>OR > 0.32, adj. p-value  1, adj. p-val<0.05) together with Apoe, Ms4a cluster and Cd33 during brain hypoperfusion and their overexpression correlated with the ischemic lesion size. Finally, the detection of Aβ oligomers in the hypoperfused hippocampus supported the link between brain ischemia and Alzheimer’s disease pathology

    An exploratory investigation of brain collateral circulation plasticity after cerebral ischemia in two experimental C57BL/6 mouse models

    Get PDF
    Brain collateral circulation is an essential compensatory mechanism in response to acute brain ischemia. To study the temporal evolution of brain macro and microcollateral recruitment and their reciprocal interactions in response to different ischemic conditions, we applied a combination of complementary techniques (T2 weighted magnetic resonance imaging [MRI], time of flight [TOF] angiography [MRA], cerebral blood flow [CBF] imaging and histology) in two different mouse models. Hypoperfusion was either induced by permanent bilateral common carotid artery stenosis (BCCAS) or 60 minute transient unilateral middle cerebral artery occlusion (MCAO). In both models, collateralization is a very dynamic phenomenon with a global effect affecting both hemispheres. Patency of ipsilateral posterior communicating artery (PcomA) represents the main variable survival mechanism and the main determinant of stroke lesion volume and recovery in MCAO whereas the promptness of external carotid artery retrograde flow recruitment together with PcomA patency, critically influence survival, brain ischemic lesion volume and retinopathy in BCCAS mice. Finally, different ischemic gradients shape microcollateral density and size

    Adipose tissue ATGL modifies the cardiac lipidome in pressure-overload-induced left ventricular failure

    Get PDF
    Adipose tissue lipolysis occurs during the development of heart failure as a consequence of chronic adrenergic stimulation. However, the impact of enhanced adipose triacylglycerol hydrolysis mediated by adipose triglyceride lipase (ATGL) on cardiac function is unclear. To investigate the role of adipose tissue lipolysis during heart failure, we generated mice with tissue-specific deletion of ATGL (atATGL-KO). atATGL-KO mice were subjected to transverse aortic constriction (TAC) to induce pressure-mediated cardiac failure. The cardiac mouse lipidome and the human plasma lipidome from healthy controls (n = 10) and patients with systolic heart failure (HFrEF, n = 13) were analyzed by MS-based shotgun lipidomics. TAC-induced increases in left ventricular mass (LVM) and diastolic LV inner diameter were significantly attenuated in atATGL-KO mice compared to wild type (wt) -mice. More importantly, atATGL-KO mice were protected against TAC-induced systolic LV failure. Perturbation of lipolysis in the adipose tissue of atATGL-KO mice resulted in the prevention of the major cardiac lipidome changes observed after TAC in wt-mice. Profound changes occurred in the lipid class of phosphatidylethanolamines (PE) in which multiple PE-species were markedly induced in failing wt-hearts, which was attenuated in atATGL-KO hearts. Moreover, selected heart failure-induced PE species in mouse hearts were also induced in plasma samples from patients with chronic heart failure. TAC-induced cardiac PE induction resulted in decreased PC/PE-species ratios associated with increased apoptotic marker expression in failing wt-hearts, a process absent in atATGL-KO hearts. Perturbation of adipose tissue lipolysis by ATGL-deficiency ameliorated pressure-induced heart failure and the potentially deleterious cardiac lipidome changes that accompany this pathological process, namely the induction of specific PE species. Non-cardiac ATGL-mediated modulation of the cardiac lipidome may play an important role in the pathogenesis of chronic heart failure

    PHACTR1 genetic variability is not critical in small vessel ischemic disease patients and PcomA recruitment in C57BL/6J mice

    Get PDF
    Recently, several genome-wide association studies identified PHACTR1 as key locus for five diverse vascular disorders: coronary artery disease, migraine, fibromuscular dysplasia, cervical artery dissection and hypertension. Although these represent significant risk factors or comorbidities for ischemic stroke, PHACTR1 role in brain small vessel ischemic disease and ischemic stroke most important survival mechanism, such as the recruitment of brain collateral arteries like posterior communicating arteries (PcomAs), remains unknown. Therefore, we applied exome and genome sequencing in a multi-ethnic cohort of 180 early-onset independent familial and apparently sporadic brain small vessel ischemic disease and CADASIL-like Caucasian patients from US, Portugal, Finland, Serbia and Turkey and in 2 C57BL/6J stroke mouse models (bilateral common carotid artery stenosis [BCCAS] and middle cerebral artery occlusion [MCAO]), characterized by different degrees of PcomAs patency. We report 3 very rare coding variants in the small vessel ischemic disease-CADASIL-like cohort (p.Glu198Gln, p.Arg204Gly, p.Val251Leu) and a stop-gain mutation (p.Gln273*) in one MCAO mouse. These coding variants do not cluster in PHACTR1 known pathogenic domains and are not likely to play a critical role in small vessel ischemic disease or brain collateral circulation. We also exclude the possibility that copy number variants (CNVs) or a variant enrichment in Phactr1 may be associated with PcomA recruitment in BCCAS mice or linked to diverse vascular traits (cerebral blood flow pre-surgery, PcomA size, leptomeningeal microcollateral length and junction density during brain hypoperfusion) in C57BL/6J mice, respectively. Genetic variability in PHACTR1 is not likely to be a common susceptibility factor influencing small vessel ischemic disease in patients and PcomA recruitment in C57BL/6J mice. Nonetheless, rare variants in PHACTR1 RPEL domains may influence the stroke outcome and are worth investigating in a larger cohort of small vessel ischemic disease patients, different ischemic stroke subtypes and with functional studies

    PHACTR1 genetic variability is not critical in small vessel ischemic disease patients and PcomA recruitment in C57BL/6J mice

    Get PDF
    Recently, several genome-wide association studies identified PHACTR1 as key locus for five diverse vascular disorders: coronary artery disease, migraine, fibromuscular dysplasia, cervical artery dissection and hypertension. Although these represent significant risk factors or comorbidities for ischemic stroke, PHACTR1 role in brain small vessel ischemic disease and ischemic stroke most important survival mechanism, such as the recruitment of brain collateral arteries like posterior communicating arteries (PcomAs), remains unknown. Therefore, we applied exome and genome sequencing in a multi-ethnic cohort of 180 early-onset independent familial and apparently sporadic brain small vessel ischemic disease and CADASIL-like Caucasian patients from US, Portugal, Finland, Serbia and Turkey and in 2 C57BL/6J stroke mouse models (bilateral common carotid artery stenosis [BCCAS] and middle cerebral artery occlusion [MCAO]), characterized by different degrees of PcomAs patency. We report 3 very rare coding variants in the small vessel ischemic disease-CADASIL-like cohort (p.Glu198Gln, p.Arg204Gly, p.Val251Leu) and a stop-gain mutation (p.Gln273*) in one MCAO mouse. These coding variants do not cluster in PHACTR1 known pathogenic domains and are not likely to play a critical role in small vessel ischemic disease or brain collateral circulation. We also exclude the possibility that copy number variants (CNVs) or a variant enrichment in Phactr1 may be associated with PcomA recruitment in BCCAS mice or linked to diverse vascular traits (cerebral blood flow pre-surgery, PcomA size, leptomeningeal microcollateral length and junction density during brain hypoperfusion) in C57BL/6J mice, respectively. Genetic variability in PHACTR1 is not likely to be a common susceptibility factor influencing small vessel ischemic disease in patients and PcomA recruitment in C57BL/6J mice. Nonetheless, rare variants in PHACTR1 RPEL domains may influence the stroke outcome and are worth investigating in a larger cohort of small vessel ischemic disease patients, different ischemic stroke subtypes and with functional studies.</p

    PHACTR1 genetic variability is not critical in small vessel ischemic disease patients and PcomA recruitment in C57BL/6J mice

    Get PDF
    Recently, several genome-wide association studies identified PHACTR1 as key locus for five diverse vascular disorders: coronary artery disease, migraine, fibromuscular dysplasia, cervical artery dissection and hypertension. Although these represent significant risk factors or comorbidities for ischemic stroke, PHACTR1 role in brain small vessel ischemic disease and ischemic stroke most important survival mechanism, such as the recruitment of brain collateral arteries like posterior communicating arteries (PcomAs), remains unknown. Therefore, we applied exome and genome sequencing in a multi-ethnic cohort of 180 early-onset independent familial and apparently sporadic brain small vessel ischemic disease and CADASIL-like Caucasian patients from US, Portugal, Finland, Serbia and Turkey and in 2 C57BL/6J stroke mouse models (bilateral common carotid artery stenosis [BCCAS] and middle cerebral artery occlusion [MCAO]), characterized by different degrees of PcomAs patency. We report 3 very rare coding variants in the small vessel ischemic disease-CADASIL-like cohort (p.Glu198Gln, p.Arg204Gly, p.Val251Leu) and a stop-gain mutation (p.Gln273*) in one MCAO mouse. These coding variants do not cluster in PHACTR1 known pathogenic domains and are not likely to play a critical role in small vessel ischemic disease or brain collateral circulation. We also exclude the possibility that copy number variants (CNVs) or a variant enrichment in Phactr1 may be associated with PcomA recruitment in BCCAS mice or linked to diverse vascular traits (cerebral blood flow pre-surgery, PcomA size, leptomeningeal microcollateral length and junction density during brain hypoperfusion) in C57BL/6J mice, respectively. Genetic variability in PHACTR1 is not likely to be a common susceptibility factor influencing small vessel ischemic disease in patients and PcomA recruitment in C57BL/6J mice. Nonetheless, rare variants in PHACTR1 RPEL domains may influence the stroke outcome and are worth investigating in a larger cohort of small vessel ischemic disease patients, different ischemic stroke subtypes and with functional studies

    Mechanisms of translational regulation in bacteria

    Get PDF
    Diese Arbeit untersucht den Zusammenhang zwischen Mechanismen der translationalen Regulation und der Genomorganisation in Bakterien. Der erste Teil der Arbeit analysiert die Beziehung zwischen der Translationseffizienz von Genen und der Häufigkeit bestimmter Codons am Genanfang. Es ist bekannt, dass die Häufigkeitsverteilung der Codons am Anfang der Gene bei einigen Organismen eine andere ist als sonst im Genom. Durch die systematische Analyse von ungefähr 400 bakteriellen Genomen, evolutionären Simulationen und experimentellen Untersuchungen sind wir zu dem Schluss gekommen, dass die beobachtete Abweichung der Codonhäufigkeiten wohl eine Konsequenz der Notwendigkeit ist, RNA Sekundärstruktur in der Nähe des Translationsstarts zu vermeiden und somit eine effiziente Initiation der Translation zu gewährleisten. Im zweiten Teil der Arbeit untersuchen wir den Einfluss der Genreihenfolge innerhalb eines Operons auf die Fitness von E. coli. In bakteriellen Genomen vereint ein Operon funktionell zusammengehörige Gene, die in einer mRNA zusammen transkribiert werden und somit in der Expression stark korreliert sind. Daneben kann die translationale Kopplung, d. h. die Interdependenz der Translationseffizienz zwischen benachbarten Genen innerhalb einer solchen mRNA, eine bestimmte Proteinstöchiometrie weiter stabilisieren. Mithilfe eines Modells für die translationale Kopplung sowie für den Chemotaxis Signalweg konnten wir zeigen, dass die native Genreihenfolge eine der Permutationen ist, die am meisten zur Robustheit der Chemotaxis beitragen. Die translationale Kopplung ist daher ein wichtiger Faktor, der die Anordnung der Gene innerhalb des Chemotaxis Operon bestimmt. Diese Arbeit zeigt, dass die Anforderungen einer effizienten Genexpression sowie die Robustheit wichtiger zellulärer Funktionen einen Einfluss auf die Organisation eines Genoms haben können: einerseits bei der Wahl der Codons am Anfang der Gene, andererseits auf die Ordnung der Gene innerhalb eines Operons.This work investigates the relationship between mechanisms of translational regulation and genome organization in bacteria. The first part analyzes the connection between translational efficiency and codon usage at the beginning of genes. It is known for some organisms that usage of synonymous codons at the gene start deviates from the codon usage elsewhere in the genome. By analyzing about 400 bacterial genomes, evolutionary simulations and experimental investigations, we conclude that the observed deviation of codon usage at the beginning of genes is most likely a consequence of the need to suppress mRNA structure around the ribosome binding site, thereby allowing efficient initiation of translation. We investigate further driving forces for genome organization by studying the impact of gene order within an operon on the fitness of bacterial cells. Operons group functionally related genes which are transcribed together as single mRNAs in E. coli and other bacteria. Correlation of protein levels is thus to a large extent attributed to this coupling on the transcriptional level. In addition, translational coupling, i.e. the interdependence of translational efficiency between neighboring genes within such a mRNA, can stabilize a desired stoichiometry between proteins. Here, we study the role of translational coupling in robustness of E. coli chemotaxis. By employing a model of translational coupling and simulating the underlying signal transduction network we show that the native gene order ranks among the permutations contributing most to robustness of chemotaxis. We therefore conclude that translational coupling is an important determinant of the gene order within the chemotaxis operon. Both these findings show that requirements for efficient gene expression and robustness of cellular function have a pronounced impact on the genomic organization, influencing the local codon usage at the beginning of genes and the order of genes within operons

    Role of translational coupling in robustness of bacterial chemotaxis pathway.

    Get PDF
    Chemotaxis allows bacteria to colonize their environment more efficiently and to find optimal growth conditions, and is consequently under strong evolutionary selection. Theoretical and experimental analyses of bacterial chemotaxis suggested that the pathway has been evolutionarily optimized to produce robust output under conditions of such physiological perturbations as stochastic intercellular variations in protein levels while at the same time minimizing complexity and cost of protein expression. Pathway topology in Escherichia coli apparently evolved to produce an invariant output under concerted variations in protein levels, consistent with experimentally observed transcriptional coupling of chemotaxis genes. Here, we show that the pathway robustness is further enhanced through the pairwise translational coupling of adjacent genes. Computer simulations predicted that the robustness of the pathway against the uncorrelated variations in protein levels can be enhanced by a selective pairwise coupling of individual chemotaxis genes on one mRNA, with the order of genes in E. coli ranking among the best in terms of noise compensation. Translational coupling between chemotaxis genes was experimentally confirmed, and coupled expression of these genes was shown to improve chemotaxis. Bioinformatics analysis further revealed that E. coli gene order corresponds to consensus in sequenced bacterial genomes, confirming evolutionary selection for noise reduction. Since polycistronic gene organization is common in bacteria, translational coupling between adjacent genes may provide a general mechanism to enhance robustness of their signaling and metabolic networks. Moreover, coupling between expression of neighboring genes is also present in eukaryotes, and similar principles of noise reduction might thus apply to all cellular networks
    corecore