104 research outputs found

    X-ray dips and a complex UV/X-ray cross-correlation function in the black hole candidate MAXI J1820+070

    Get PDF
    MAXI J1820+070, a black hole candidate first detected in early 2018 March, was observed by XMM-Newton during the outburst rise. In this letter we report on the spectral and timing analysis of the XMM-Newton X-ray and UV data, as well as contemporaneous X-ray data from the Swift satellite. The X-ray spectrum is well described by a hard thermal Comptonization continuum. The XMM-Newton X-ray light curve shows a pronounced dipping interval, and spectral analysis indicates that it is caused by a moderately ionized partial covering absorber. The XMM-Newton/OM U-filter data do not reveal any signs of the 17 h orbital modulation that was seen later on during the outburst decay. The UV/X-ray cross-correlation function shows a complex shape, with a peak at positive lags of about 4 s and a precognition dip at negative lags, which is absent during the X-ray dipping episode. Such shape could arise if the UV emission comes partially from synchrotron self-Compton emission near the black hole, as well as from reprocessing of the X-rays in the colder accretion disc further out

    The INTEGRAL view on black hole X-ray binaries

    Get PDF
    INTEGRAL is an ESA mission in fundamental astrophysics that was launched in October 2002. It has been in orbit for over 18 years, during which it has been observing the high-energy sky with a set of instruments specifically designed to probe the emission from hard X-ray and soft -ray sources. This paper is devoted to the subject of black hole binaries, which are among the most important sources that populate the high-energy sky. We present a review of the scientific literature based on INTEGRAL data, which has significantly advanced our knowledge in the field of relativistic astrophysics. We briefly summarise the state-of-the-art of the study of black hole binaries, with a particular focus on the topics closer to the INTEGRAL science. We then give an overview of the results obtained by INTEGRAL and by other observatories on a number of sources of importance in the field. Finally, we review the main results obtained over the past 18 years on all the black hole binaries that INTEGRAL has observed. We conclude with a summary of the main contributions of INTEGRAL to the field, and on the future perspectives.</p

    Burst-induced coronal cooling in GS 1826-24: The clock wagging its tail

    No full text
    © ESO 2020. Type I X-ray bursts in GS 1826-24, and in several other systems, may induce cooling of the hot inner accretion flow that surrounds the bursting neutron star. Given that GS 1826-24 remained persistently in the hard state over the period 2003-2008 and presented regular bursting properties, we stacked the spectra of the X-ray bursts detected by INTEGRAL (JEM-X and ISGRI) and XMM-Newton (RGS) during that period to study the effect of the burst photons on the properties of the Comptonizing medium. The extended energy range provided by these instruments allows the simultaneous observation of the burst and persistent emission spectra. We detect an overall change in the shape of the persistent emission spectrum in response to the burst photon shower. For the first time, we observe simultaneously a drop in the hard X-ray emission, together with a soft X-ray excess with respect to the burst blackbody emission. The hard X-ray drop can be explained by burst-induced coronal cooling, while the bulk of the soft X-ray excess can be described by fitting the burst emission with an atmosphere model, instead of a simple blackbody model. Traditionally, the persistent emission was assumed to be invariant during X-ray bursts, and more recently to change only in normalization but not in spectral shape; the observed change in the persistent emission level during X-ray bursts may thus trigger the revision of existing neutron star mass-radius constraints, as the derived values rely on the assumption that the persistent emission does not change during X-ray bursts. The traditional burst fitting technique leads to up to a 10% overestimation of the bolometric burst flux in GS 1826-24, which significantly hampers the comparisons of the KEPLER and MESA model against this "textbook burster"

    Rapid spectral transition of the black hole binary V404 Cygni

    No full text
    During the June 2015 outburst of the black hole binary V404 Cyg, rapid changes in the X-ray brightness and spectra were common. The INTEGRAL monitoring campaign detected spectacular Eddington-limited X-ray flares, but also rapid variations at much lower flux levels. On 2015 June 21 at 20 h 50 min, the 3-10 keV JEM-X data as well as simultaneous optical data started to display a gradual brightening from one of these low-flux states. This was followed 15 min later by an order-of-magnitude increase of flux in the 20-40 keV IBIS/ISGRI light curve in just 15 s. The best-fitting model for both the pre- and post-transition spectra required a Compton-thick partially covering absorber. The absorber parameters remained constant, but the spectral slope varied significantly during the event, with the photon index decreasing from Âż Âż 3.7 to Âż Âż 2.3. We propose that the rapid 20-40 keV flux increase was either caused by a spectral state transition that was hidden from our direct view, or that there was a sudden reduction in the amount of Compton down-scattering of the primary X-ray emission in the disk outflow.With funding from the Spanish government through the "MarĂ­a de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    A multi-wavelength view of distinct accretion regimes in the pulsating ultraluminous X-ray source NGC 1313 X-2

    Get PDF
    NGC 1313 X-2 is one of the few known pulsating ultraluminous X-ray sources (PULXs), and so is thought to contain a neutron star that accretes at highly super-Eddington rates. However, the physics of this accretion remains to be determined. Here, we report the results of two simultaneous XMM–Newton and HST observations of this PULX taken to observe two distinct X-ray behaviours as defined from its Swift light curve. We find that the X-ray spectrum of the PULX is best described by the hard ultraluminous regime during the observation taken in the lower flux, lower variability amplitude behaviour; its spectrum changes to a broadened disc during the higher flux, higher variability amplitude epoch. However, we see no accompanying changes in the optical/UV fluxes, with the only difference being a reduction in flux in the near-infrared (NIR) as the X-ray flux increased. We attempt to fit irradiation models to explain the UV/optical/IR fluxes but they fail to provide meaningful constraints. Instead, a physical model for the system leads us to conclude that the optical light is dominated by a companion O/B star, albeit with an IR excess that may be indicative of a jet. We discuss how these results may be consistent with the precession of the inner regions of the accretion disc leading to changes in the observed X-ray properties, but not the optical, and whether we should expect to observe reprocessed emission from ULXs

    Long-term optical and X-ray variability of the Be/X-ray binary H 1145–619: Discovery of an ongoing retrograde density wave

    No full text
    Context. Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity.Aims. We investigate the correlation between the optical emission and X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc.Methods. We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 yr. We used optical spectra from the SAAO, SMARTS, and SALT telescopes and optical photometry from the Optical Monitoring Camera (OMC) onboard INTEGRAL and from the All Sky Automated Survey (ASAS). We also used X-ray observations from INTEGRAL/JEM-X, and IBIS to generate the light curves and combined them with Swift/XRT to extract the X-ray spectra. In addition, we compiled archival observations and measurements from the literature to complement these data.Results. Comparing the evolution of the optical continuum emission with the Hα line variability, we identified three different patterns of optical variability: first, global increases and decreases of the optical brightness, observed from 1982 to 1994 and from 2009 to 2017, which can be explained by the dissipation and replenishment of the circumstellar disc; second, superorbital variations with a period of Psuperorb ≈ 590 days, observed in 2002–2009, which seems to be related to the circumstellar disc; and third, optical outbursts, observed in 1998–1999 and 2002–2005, which we interpret as mass ejections from the Be star. We discovered the presence of a retrograde one-armed density wave, which appeared in 2016 and is still present in the circumstellar disc.Conclusions. We carried out the most complete long-term optical study of the Be/X-ray binary H 1145-619 in correlation with its X-ray activity. For the first time, we found the presence of a retrograde density perturbation in the circumstellar disc of a Be/X-ray binary

    The INTEGRAL view on black hole X-ray binaries

    No full text
    International audienceINTEGRAL is an ESA mission in fundamental astrophysics that was launched in October 2002. It has been in orbit for over 18 years, during which it has been observing the high-energy sky with a set of instruments specifically designed to probe the emission from hard X-ray and soft Îł-ray sources. This paper is devoted to the subject of black hole binaries, which are among the most important sources that populate the high-energy sky. We present a review of the scientific literature based on INTEGRAL data, which has significantly advanced our knowledge in the field of relativistic astrophysics. We briefly summarise the state-of-the-art of the study of black hole binaries, with a particular focus on the topics closer to the INTEGRAL science. We then give an overview of the results obtained by INTEGRAL and by other observatories on a number of sources of importance in the field. Finally, we review the main results obtained over the past 18 years on all the black hole binaries that INTEGRAL has observed. We conclude with a summary of the main contributions of INTEGRAL to the field, and on the future perspectives
    • 

    corecore