32 research outputs found

    Does maternal genetic liability to folate deficiency influence the risk of antiseizure medication-associated language impairment and autistic traits in children of women with epilepsy?

    Get PDF
    Background: Prenatal exposure to antiseizure medication (ASM) may lead to low plasma folate concentrations and is associated with impaired neurodevelopment. Objectives: To examine whether maternal genetic liability to folate deficiency interacts with ASM-associated risk of language impairment and autistic traits in children of women with epilepsy. Methods: We included children of women with and without epilepsy and with available genetic data enrolled in the Norwegian Mother, Father, and Child Cohort Study. Information on ASM use, folic acid supplement use and dose, dietary folate intake, child autistic traits, and child language impairment was obtained from parent-reported questionnaires. Using logistic regression, we examined the interaction between prenatal ASM exposure and maternal genetic liability to folate deficiency expressed as polygenic risk score of low folate concentrations or maternal rs1801133 genotype (CC or CT/TT) on risk of language impairment or autistic traits. Results: We included 96 children of women with ASM-treated epilepsy, 131 children of women with ASM-untreated epilepsy, and 37,249 children of women without epilepsy. The polygenic risk score of low folate concentrations did not interact with the ASM-associated risk of language impairment or autistic traits in ASM-exposed children of women with epilepsy compared with ASM-unexposed children aged 1.5–8 y. ASM-exposed children had increased risk of adverse neurodevelopment regardless of maternal rs1801133 genotype {adjusted odds ratio [aOR] for language impairment aged 8 y was 2.88 [95% confidence interval (CI): 1.00, 8.26] if CC and aOR 2.88 [95% CI: 1.10, 7.53] if CT/TT genotypes}. In children of women without epilepsy aged 3 y, those with maternal rs1801133 CT/TT compared with CC genotype had increased risk of language impairment (aOR: 1.18; 95% CI: 1.05, 1.34). Conclusions: In this cohort of pregnant women reporting widespread use of folic acid supplements, maternal genetic liability to folate deficiency did not significantly influence the ASM-associated risk of impaired neurodevelopment.publishedVersio

    Long-Term Use of Amoxicillin Is Associated with Changes in Gene Expression and DNA Methylation in Patients with Low Back Pain and Modic Changes

    Get PDF
    Long-term antibiotics are prescribed for a variety of medical conditions, recently including low back pain with Modic changes. The molecular impact of such treatment is unknown. We conducted longitudinal transcriptome and epigenome analyses in patients (n = 100) receiving amoxicillin treatment or placebo for 100 days in the Antibiotics in Modic Changes (AIM) study. Gene expression and DNA methylation were investigated at a genome-wide level at screening, after 100 days of treatment, and at one-year follow-up. We identified intra-individual longitudinal changes in gene expression and DNA methylation in patients receiving amoxicillin, while few changes were observed in patients receiving placebo. After 100 days of amoxicillin treatment, 28 genes were significantly differentially expressed, including the downregulation of 19 immunoglobulin genes. At one-year follow-up, the expression levels were still not completely restored. The significant changes in DNA methylation (n = 4548 CpGs) were mainly increased methylation levels between 100 days and one-year follow-up. Hence, the effects on gene expression occurred predominantly during treatment, while the effects on DNA methylation occurred after treatment. In conclusion, unrecognized side effects of long-term amoxicillin treatment were revealed, as alterations were observed in both gene expression and DNA methylation that lasted long after the end of treatment.publishedVersio

    Inherited retinal disease in Norway - a characterization of current clinical and genetic knowledge

    No full text
    Purpose The purpose of this study was to characterize current clinical and genetic knowledge of patients with inherited retinal disease in Norway and give an estimate of the prevalence. These data are necessary to identify patients eligible for new personalized medicines, to facilitate genetic counselling for their families and to plan clinical follow‐up. Methods A patient registry including clinical and genetic data was established. Clinical data were retrieved during 2003–2018. Genetic testing was performed in the period 2007–2018. Results The material included 866 patients with 41 clinical diagnoses at the cut‐off date. The most prevalent diseases were as follows: retinitis pigmentosa (54%), Stargardt macular dystrophy (6.5%) and Leber congenital amaurosis (5.2%). A genetic diagnosis was identified in 32% of patients. In total, 207 disease‐causing variants in 56 genes were reported. The most commonly reported disease‐causing genes were ABCA4, USH2A and BEST1. The estimated adjusted minimum prevalence of inherited retinal disease in the south‐east region of Norway was 1: 3,856 (2.6/10 000). Conclusion This population‐based study demonstrated an estimated prevalence for all inherited retinal diseases in south‐east Norway and described the distribution of clinical diagnoses, onset of symptoms, inheritance patterns and genetic data and thereby expands our knowledge of inherited retinal disease in Norway. The newly established registry and biobank will support patient feasibility for future clinical trials, treatment selection and counselling of families

    Pyruvatdehydrogenase-mangel

    No full text

    Differential Glial Activation in Early Epileptogenesis—Insights From Cell-Specific Analysis of DNA Methylation and Gene Expression in the Contralateral Hippocampus

    No full text
    Background and Aims: Morphological changes in mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) are well-characterized. Yet, it remains elusive whether these are a consequence of seizures or originate from a hitherto unknown underlying pathology. We recently published data on changes in gene expression and DNA methylation in the ipsilateral hippocampus (ILH) using the intracortical kainate mouse model of mTLE-HS. In order to explore the effects of epileptic activity alone and also to further disentangle what triggers morphological alterations, we investigated glial and neuronal changes in gene expression and DNA methylation in the contralateral hippocampus (CLH). Methods: The intracortical kainic acid mouse model of mTLE-HS was used to elicit status epilepticus. Hippocampi contralateral to the injection site from eight kainate-injected and eight sham mice were extracted and shock frozen at 24 h post-injection. Glial and neuronal nuclei were sorted by flow cytometry. Alterations in gene expression and DNA methylation were assessed using reduced representation bisulfite sequencing and RNA sequencing. The R package edgeR was used for statistical analysis. Results: The CLH featured substantial, mostly cell-specific changes in both gene expression and DNA methylation in glia and neurons. While changes in gene expression overlapped to a great degree between CLH and ILH, alterations in DNA methylation did not. In the CLH, we found a significantly lower number of glial genes up- and downregulated compared to previous results from the ILH. Furthermore, several genes and pathways potentially involved in anti-epileptogenic effects were upregulated in the CLH. By comparing gene expression data from the CLH to previous results from the ILH (featuring hippocampal sclerosis), we derive potential upstream targets for epileptogenesis, including glial Cox2 and Cxcl10. Conclusion: Despite the absence of morphological changes, the CLH displays substantial changes in gene expression and DNA methylation. We find that gene expression changes related to potential anti-epileptogenic effects seem to dominate compared to the pro-epileptogenic effects in the CLH and speculate whether this imbalance contributes to prevent morphological alterations like neuronal death and reactive gliosis

    Spastic paraplegia type 7 is Associated with multiple mitochondrial DNA deletions

    Get PDF
    Spastic paraplegia 7 is an autosomal recessive disorder caused by mutations in the gene encoding paraplegin, a protein located at the inner mitochondrial membrane and involved in the processing of other mitochondrial proteins. The mechanism whereby paraplegin mutations cause disease is unknown. We studied two female and two male adult patients from two Norwegian families with a combination of progressive external ophthalmoplegia and spastic paraplegia. Sequencing of SPG7 revealed a novel missense mutation, c.2102A.C, p.H 701P, which was homozygous in one family and compound heterozygous in trans with a known pathogenic mutation c.1454_1462del in the other. Muscle was examined from an additional, unrelated adult female patient with a similar phenotype caused by a homozygous c.1047insC mutation in SPG7. Immunohistochemical studies in skeletal muscle showed mosaic deficiency predominantly affecting respiratory complex I, but also complexes III and IV. Molecular studies in single, microdissected fibres showed multiple mitochondrial DNA deletions segregating at high levels (38–97%) in respiratory deficient fibres. Our findings demonstrate for the first time that paraplegin mutations cause accumulation of mitochondrial DNA damage and multiple respiratory chain deficiencies. While paraplegin is not known to be directly associated with the mitochondrial nucleoid, it is known to process other mitochondrial proteins and it is possible therefore that paraplegin mutations lead to mitochondrial DNA deletions by impairing proteins involved in the homeostasis of the mitochondrial genome. These studies increase our understanding of the molecular pathogenesis of SPG7 mutations and suggest that SPG7 testing should be included in the diagnostic workup of autosomal recessive, progressive external ophthalmoplegia, especially if spasticity is present

    Pharmacokinetic interaction between modified Atkins diet and antiepileptic drugs in adults with drug-resistant epilepsy

    No full text
    Objective The aim was to examine the influence of modified Atkins diet on serum concentration of antiepileptic drugs (AEDs). Methods Prospective data from 63 adult patients with either focal or generalized drug‐resistant epilepsy recruited to 12‐week dietary treatment as add‐on to AEDs are analyzed. AED serum concentrations, ketones, glucose, and hemoglobin A1c were measured before and after the dietary intervention. Paired t test was used and Spearman correlation coefficient, r, was estimated. Results Mean age was 37 years (range 16‐65 years). Mean serum concentrations of carbamazepine, clobazam, and valproate were significantly reduced after 4 and 12 weeks of the diet period (<.001 ≤ P ≤ .02). Levels of lacosamide, lamotrigine, and topiramate were less reduced (.02 ≤ P ≤ .08), whereas the serum concentrations of oxcarbazepine, zonisamide, and levetiracetam were unchanged (.06 ≤ P ≤ .90). The largest reduction in serum concentration was found for clobazam: mean reduction after 12 weeks was 1.5 μmol/L (34%). Percent change in serum concentration after 4 and 12 weeks of all drugs analyzed was −10.5% (95% confidence interval [CI] −14.1 to −6.8; n = 60; P < .001) and −13.5% (95% CI −18.8 to −8.3; n = 56; P < .001), respectively. Percent change in serum concentration of AEDs was not significantly correlated to percent change in seizure frequency after 12 weeks of dietary treatment (r = .14, P = .33, n = 53) but negatively correlated to urine ketosis (r = −.43; P = .003; n = 46). Significance A reduction in AED serum concentrations may counteract a seizure‐reducing effect of the diet, and in patients without such an effect, it may cause seizure aggravation. Thus, we recommend that clinicians who are treating patients with ketogenic diets monitor serum concentrations of the concomitant AEDs
    corecore