37 research outputs found

    Rolandic Epilepsy: Self-Limited Epilepsy with Centrotemporal Spikes

    Get PDF
    Childhood epilepsy with centrotemporal spikes, had been previously considered as benign childhood epilepsy. According to the new classification proposed by Sheffer I. and colleagues the term “benign” has been changed to “self-limited”. Many studies reported that BECTS may cause transient or long lasting cognitive and behavioral disturbances. Rolandic epilepsy is the most frequent among the childhood focal epilepsy and may account for about 15–25% of all epileptic syndromes diagnosed between the ages of 5 to 15 years. The incidence range changes between 7.1–21 per 100000 in population younger than 15 years with male predominance. The age of onset in 90% of cases between 1 and 10 years with peak around 6–7 years. Seizures mainly occur during a night sleep, whereas the probability of awake seizures are less than 10%. The characteristic clinical features are: (1) focal motor seizure with unilateral orofacial tonic or clonic contractions; (2) speech arrest; (3) hypersalivation; (4) sensory symptoms represented by unilateral numbness or paresthesia of tongue, lips, gum and inner part of the check; (5) unilateral clonic jerk in leg and arm with postictal paresis; (6) generalized seizures. The EEG picture is distinctive in Rolandic epilepsy. The background activity is almost always preserved in awake state and during a sleep. The typical interictal EEG pattern is high voltage, diphasic spikes or sharp waves frequently with slow activity on central-midtemporal region. The centrotemporal spikes or rolandic spikes come from the lower rolandic region created a horizontal dipole with maximal electronegativity in the centrotemporal region and electropositivity in the frontal region usually seen unilateral or bilateral. In most cases children with RE have a good prognosis regarding both seizures and neurodevelopment. The remission of seizures usually occurs before the age of 18 years. The cognitive and behavior problem may happen in active period of disease which are reversable in most of patients

    Analysis of C9orf72 repeat expansions in Georgian patients with Amyotrophic lateral sclerosis (ALS) [version 2; peer review: 2 approved]

    Get PDF
    Background Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder that affects the upper and lower motor neurons. Several genetic risk factors have been identified in the past decade with a hexanucleotide repeat expansion in the C9orf72 gene being the most significant. However, the presence of C9orf72 repeat expansion has not been examined in the Transcaucasian region, therefore we aimed to analyse its frequency in Georgian patients with ALS. Methods We included 64 self-reported Georgian patients with ALS from different parts of the country, fulfilling the Gold Coast criteria. To investigate the presence of an expanded GGGGCC hexanucleotide repeat in the non-coding region of the C9orf72 gene, we performed Repeat-Primed PCR (RP-PCR). Results In total, 62 sporadic and two familial ALS cases were identified. Patients were aged 26 to 84 years with a mean age of 58.3 years at disease onset. Bulbar onset was observed in 21.88%, upper limb onset in 34.38%, and lower limb onset in 43.75% of the patients. Frontotemporal dementia (FTD) fulfilling the Strong criteria was diagnosed in seven patients (10.94%). C9orf72 repeat expansion was detected in only one case using RP-PCR; the patient had a family history of dementia. Conclusions Our results indicate that C9orf72 hexanucleotide expansion does not belong to the major genetic risk factor of ALS in Georgian patients. Further genetic studies in a bigger study population are needed to reveal the genetic causes of ALS in the Transcaucasian population

    GGPS1-associated muscular dystrophy with and without hearing loss

    Get PDF
    Ultra-rare biallelic pathogenic variants in geranylgeranyl diphosphate synthase 1 (GGPS1) have recently been associated with muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Here, we describe 11 affected individuals from four unpublished families with ultra-rare missense variants in GGPS1 and provide follow-up details from a previously reported family. Our cohort replicated most of the previously described clinical features of GGPS1 deficiency; however, hearing loss was present in only 46% of the individuals. This report consolidates the disease-causing role of biallelic variants in GGPS1 and demonstrates that hearing loss and ovarian insufficiency might be a variable feature of the GGPS1-associated muscular dystrophy

    Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders

    Get PDF
    The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins, and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Utilizing exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with YnMyr chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), with ages ranging from 1 to 50 years old, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%), and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%), and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%), and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each), as well as hypertrophy of the clava (24%) were common neuroimaging findings. acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism, and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localisation and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-Myristoylation was similarly affected in acbd6-deficient zebrafish and Xenopus tropicalis models, including Fus, Marcks, and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Defining the Genetic Causes of Rare Paediatric Neurological Diseases in Central Asian and Transcaucasian Populations

    No full text
    Significant advancements in genomic medicine, made in the recent two decades, provided a molecular diagnosis for many families with rare diseases, including rare paediatric neurological diseases (RPND), increasing access to precision medicine. However, despite these advancements and the progressively decreasing cost of next-generation sequencing (NGS), many world regions remain underrepresented in human genetic research, lacking access to NGS. One of these regions is Central Asia and Transcaucasia (CAT), populated by genetically unique ethnic groups residing in the middle of Eurasia. Little is known about the genetic causes of RPND in CAT. In this work, I establish an unprecedented large-scale genetic study of RPND in CAT by interrogating a network building between University College London (UCL) and CAT, extensive patient recruitment, whole exome sequencing, and functional genomics techniques. This project was integrated into the Synaptopathies and Paroxysmal Syndromes (SYNaPS) study that had been taking place at the Institute of Neurology, UCL. Local institutional review board approvals were obtained from all participating CAT centers. Over the 3.5 years of my project, 2200 families with RPND from CAT have been recruited, and in this thesis, I report WES data, currently available from 487 families. Definitive and likely genetic diagnoses have been made for 37% and 10% of the CAT families, respectively. Firm and putative candidate novel disease-genes were found in 11%. Three of the firm novel disease-genes are reported in 3 separate chapters of this thesis (LETM1, SPATA5L1, and ACBD6) that reveal 3 novel disease pathways pertaining to mitochondrial volume homeostasis, ribosomal biogenesis, and protein posttranslational modification. Multiple international families were identified for these novel disease-genes, and deep phenotyping with extensive functional characterization is provided in the thesis. Notably, a potential mechanistic treatment is suggested for 2 of the novel disease-genes. In addition, the thesis delineates the phenotypes of the 2 known disease genes including NFU1 and EMC10. Overall, this PhD project has multiple immediate, incremental, and long-term impacts on several domains of academia as well as healthcare on both the regional and international levels, as has been explicated in the following impact statement
    corecore