32 research outputs found

    Contextualized End-to-End Speech Recognition with Contextual Phrase Prediction Network

    Full text link
    Contextual information plays a crucial role in speech recognition technologies and incorporating it into the end-to-end speech recognition models has drawn immense interest recently. However, previous deep bias methods lacked explicit supervision for bias tasks. In this study, we introduce a contextual phrase prediction network for an attention-based deep bias method. This network predicts context phrases in utterances using contextual embeddings and calculates bias loss to assist in the training of the contextualized model. Our method achieved a significant word error rate (WER) reduction across various end-to-end speech recognition models. Experiments on the LibriSpeech corpus show that our proposed model obtains a 12.1% relative WER improvement over the baseline model, and the WER of the context phrases decreases relatively by 40.5%. Moreover, by applying a context phrase filtering strategy, we also effectively eliminate the WER degradation when using a larger biasing list.Comment: Accepted by interspeech202

    Adaptive Contextual Biasing for Transducer Based Streaming Speech Recognition

    Full text link
    By incorporating additional contextual information, deep biasing methods have emerged as a promising solution for speech recognition of personalized words. However, for real-world voice assistants, always biasing on such personalized words with high prediction scores can significantly degrade the performance of recognizing common words. To address this issue, we propose an adaptive contextual biasing method based on Context-Aware Transformer Transducer (CATT) that utilizes the biased encoder and predictor embeddings to perform streaming prediction of contextual phrase occurrences. Such prediction is then used to dynamically switch the bias list on and off, enabling the model to adapt to both personalized and common scenarios. Experiments on Librispeech and internal voice assistant datasets show that our approach can achieve up to 6.7% and 20.7% relative reduction in WER and CER compared to the baseline respectively, mitigating up to 96.7% and 84.9% of the relative WER and CER increase for common cases. Furthermore, our approach has a minimal performance impact in personalized scenarios while maintaining a streaming inference pipeline with negligible RTF increase

    The ISCSLP 2022 Intelligent Cockpit Speech Recognition Challenge (ICSRC): Dataset, Tracks, Baseline and Results

    Full text link
    This paper summarizes the outcomes from the ISCSLP 2022 Intelligent Cockpit Speech Recognition Challenge (ICSRC). We first address the necessity of the challenge and then introduce the associated dataset collected from a new-energy vehicle (NEV) covering a variety of cockpit acoustic conditions and linguistic contents. We then describe the track arrangement and the baseline system. Specifically, we set up two tracks in terms of allowed model/system size to investigate resource-constrained and -unconstrained setups, targeting to vehicle embedded as well as cloud ASR systems respectively. Finally we summarize the challenge results and provide the major observations from the submitted systems.Comment: Accepted by ISCSLP202

    Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia

    Get PDF
    Abstract Background Elderly patients with relapsed and refractory acute lymphoblastic leukemia (ALL) have poor prognosis. Autologous CD19 chimeric antigen receptor-modified T (CAR-T) cells have potentials to cure patients with B cell ALL; however, safety and efficacy of allogeneic CD19 CAR-T cells are still undetermined. Case presentation We treated a 71-year-old female with relapsed and refractory ALL who received co-infusion of haplo-identical donor-derived CD19-directed CAR-T cells and mobilized peripheral blood stem cells (PBSC) following induction chemotherapy. Undetectable minimal residual disease by flow cytometry was achieved, and full donor cell engraftment was established. The transient release of cytokines and mild fever were detected. Significantly elevated serum lactate dehydrogenase, alanine transaminase, bilirubin and glutamic-oxalacetic transaminase were observed from days 14 to 18, all of which were reversible after immunosuppressive therapy. Conclusions Our preliminary results suggest that co-infusion of haplo-identical donor-derived CAR-T cells and mobilized PBSCs may induce full donor engraftment in relapsed and refractory ALL including elderly patients, but complications related to donor cell infusions should still be cautioned. Trial registration Allogeneic CART-19 for Elderly Relapsed/Refractory CD19+ ALL. NCT0279955

    Selenoprotein gene nomenclature

    Get PDF
    The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4 and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine-R-sulfoxide reductase 1) and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15 kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV) and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates

    Expert Consensus on Microtransplant for Acute Myeloid Leukemia in Elderly Patients -Report From the International Microtransplant Interest Group

    Get PDF
    Recent studies have shown that microtransplant (MST) could improve outcome of patients with elderly acute myeloid leukemia (EAML). To further standardize the MST therapy and improve outcomes in EAML patients, based on analysis of the literature on MST, especially MST with EAML from January 1st, 2011 to November 30th, 2022, the International Microtransplant Interest Group provides recommendations and considerations for MST in the treatment of EAML. Four major issues related to MST for treating EAML were addressed: therapeutic principle of MST (1), candidates for MST (2), induction chemotherapy regimens (3), and post-remission therapy based on MST (4). Others included donor screening, infusion of donor cells, laboratory examinations, and complications of treatment

    Preparation, characterization of CoxMn1−xO2 nanowires and their catalytic performance for degradation of methylene blue

    No full text
    CoxMn1−xO2 nanowires and microspheres (0.15 ⩜ x ⩜ 0.5) catalysts were synthesized, and their catalytic performance in oxidative degradation of methylene blue (MB) in water under oxygen air bubbles pumping was investigated. X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and N2 adsorption–desorption techniques were used to characterize the structure, morphology and SBET of CoxMn1−xO2 nanostructures. Nucleation–dissolution–recrystallization and reduction migration species mechanism was suggested for the growth of the nanowires. The effect of molar ratios of reactants and morphology of products were investigated in terms of MB degradation. The catalyst characterization was performed by mass spectra, chemical oxygen demand (COD), total organic carbon (TOC), the Langmuir and Freundlich isotherms. The results revealed the CoxMn1−xO2 nanowires exhibited excellent catalytic efficiency for the degradation of MB than CoxMn1−xO2 microspheres

    Hydrothermal formation and electrochemical property of Ag1.8Mn8O16 microcrystals for Li-ion battery cathode application

    Get PDF
    In this article, Ag1.8Mn8O16 microcrystals assembled from nanosphere building blocks were successfully fabricated via a one-pot hydrothermal route using silver nitrate and potassium permanganate as raw materials. The particles were characterized by X-ray powder diffraction (XRD), energy dispersive X-ray microanalysis (EDX), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), cyclic voltammogram, galvanostatic charge–discharge and Nyquist plane plot. Ordinary differential equations (ODEs) and the electrode kinetics were used to investigate the synthesis and electrochemical activity. The as-prepared Ag1.8Mn8O16 microspheres reveal the highest reversible discharge capacity ∌1468 mAh even after 100 cycles in the potential range of 3.4–4.2 V and the best cycling stability

    Formation of Mn3O4 nanobelts through the solvothermal process and their photocatalytic property

    No full text
    Hausmannite Mn3O4 nanobelts were synthesized from manganese acetate and potassium hydroxide precursors in the presence of melamine–ethanol–distill water via the reflux and solvothermal methods. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopes confirm the composition of the as-prepared product. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), selected area electron diffraction (SA-ED), high resolution transmission electron microscopy (HR-TEM) and N2 adsorption-desorption isotherm results showed that the as-fabricated sample exhibits a nanosized belt-like crystal, single crystalline, tetragonal phase structure and high BET surface area. The effects of the reaction conditions such as melamine amount, solvent ratios and reaction time on the morphology of the products were studied. The band gap of the as-synthesized products was calculated via diffuse reflectance spectral analysis and their activity of catalytic oxidation was evaluated by degradation of diphenylthiocarbazone under visible-light irradiation. GC–MS instrument was used to monitor the temporal course of the catalytic reaction. The results showed that the degradation efficiency of diphenylthiocarbazone catalyzed by Mn3O4 nanobelts was higher than that which had been prepared in particle and sheet-like nanocrystals. Keywords: Manganese oxide, Solvothermal, Nanobelts, Diphenylthiocarbazon
    corecore