67 research outputs found

    Did the “double carbon” policy improve the green total factor productivity of iron and steel enterprises? a quasi-natural experiment based on carbon emission trading pilot

    Get PDF
    Based on the data of listed companies in China’s iron and steel industry from 2007 to 2020, the article investigates the impact mechanism and the path of action of China’s carbon emissions trading pilot on the green total factor productivity of iron and steel enterprises by constructing a multi-period difference-in-difference model difference-in-differences. The study finds that: 1) China’s iron and steel enterprises significantly improve their green total factor productivity driven by the carbon trading pilot, and the findings pass the corresponding robustness tests. 2) the mechanism analysis indicates that the carbon trading pilot promotes the green total factor productivity of iron and steel enterprises by forcing the technological progress of enterprises. 3) The heterogeneity analysis shows that the positive effect is more significant for large iron and steel enterprises with high social responsibility rating and high local government competition intensity, but not for small enterprises with low social responsibility rating and low local government competition intensity. 4) the dynamic effect shows that there is a certain lag in the promotion effect of the carbon emission trading pilot on the green total factor productivity of iron and steel enterprises, but its long-term effect is more obvious. This paper puts forward corresponding suggestions for accelerating the construction of a national unified green and low-carbon market system and actively promoting the deepening of the “dual-carbon” goal

    A high performance flexible recyclable supercapacitor with polyaniline by casting in unconventional proportion

    Get PDF
    Abstract(#br)A new type of recyclable flexible solid-state supercapacitor with good electrochemical performance and folder ability is produced through a facile method. Polyvinylidene fluoride - acetylene black - polyethylene glycol - polyaniline (PVDF-AB-PEG-PANI) film electrode with excellent processability and tailorability is prepared by casting strategy, which uses large amount of PVDF as film former. The new electrode has good performance with excellent flexibility (d r < 1 mm and capacity retention 97.4 % after folding 1000 times) and electrochemical performance (It can utilize the active substance efficiently that it closes to the theoretical value, with high areal capacitance of 890.44 mF cm −2 and volumetric capacitance of 89.04 F cm −3 ). A capacitance retention of 72.5 % is obtained for the supercapacitor based on this electrode after 5000 charging/discharging cycles, even polyaniline is synthesized by conventional method. The most interesting thing is that, the supercapacitor based on this electrode can easily be recycled and reused (capacity retention 97.1 % after 4 recycle times)

    OpenMPR:Recognize places using multimodal data for people with visual impairments

    Get PDF
    Place recognition plays a crucial role in navigational assistance, and is also a challenging issue of assistive technology. The place recognition is prone to erroneous localization owing to various changes between database and query images. Aiming at the wearable assistive device for visually impaired people, we propose an open-sourced place recognition algorithm OpenMPR, which utilizes the multimodal data to address the challenging issues of place recognition. Compared with conventional place recognition, the proposed OpenMPR not only leverages multiple effective descriptors, but also assigns different weights to those descriptors in image matching. Incorporating GNSS data into the algorithm, the cone-based sequence searching is used for robust place recognition. The experiments illustrate that the proposed algorithm manages to solve the place recognition issue in the real-world scenarios and surpass the state-of-the-art algorithms in terms of assistive navigation performance. On the real-world testing dataset, the online OpenMPR achieves 88.7% precision at 100% recall without illumination changes, and achieves 57.8% precision at 99.3% recall with illumination changes. The OpenMPR is available at https://github.com/chengricky/OpenMultiPR.Comment: The paper is accepted by the special issue of Measurement Science and Engineerin

    Broadband Acoustic Sensing with Optical Nanofiber Couplers Working at the Dispersion Turning Point

    No full text
    Herein, a broadband ultrasensitive acoustic sensor based on an optical nanofiber coupler (ONC) attached to a diaphragm is designed and experimentally demonstrated. The ONC is sensitive to axial strain and works as the core transducing element to monitor the deformation of the diaphragm driven by acoustic waves. We first theoretically studied the sensing property of the ONC to axial strain and the deformation of the diaphragm. The results reveal that ONC working at the dispersion turning point (DTP) shows improved ultra-sensitivity towards axial strain, and the largest deformation of the circular diaphragm occurs at the center. Guided by the theoretical results, we fabricated an ONC with a DPT at 1550 nm, and we fixed one end of the ONC to the center of the diaphragm and the other end to the edge to construct the acoustic sensor. Finally, the experimental results show that the sensor can achieve accurate measurement in the broadband acoustic wave range of 30~20,000 Hz with good linearity. Specifically, when the input acoustic wave frequency is 120 Hz, the sensitivity reaches 1923 mV/Pa, the signal-to-noise ratio is 42.45 dB, and the minimum detectable sound pressure is 330 &mu;Pa/Hz1/2. The sensor has the merits of simple structure, low cost, and high performance, and it provides a new method for acoustic wave detection

    Unifying Visual Localization and Scene Recognition for People with Visual Impairment

    No full text

    OpenMPR:Development API and Apps

    No full text
    corecore