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Abstract. Place recognition plays a crucial role in navigational assistance,

22

23 and is also a challenging issue of assistive technology. The place recognition
is prone to erroneous localization owing to various changes between database

24 and query images. Aiming at the wearable assistive device for visually impaired

25 people, we propose an open-sourced place recognition algorithm OpenMPR,

26 which utilizes the multimodal data to address the challenging issues of place

57 recognition. Compared with conventional place recognition, the proposed
OpenMPR not only leverages multiple effective descriptors, but also assigns

28 different weights to those descriptors in image matching. Incorporating GNSS

29 data into the algorithm, the cone-based sequence searching is used for robust place

30 recognition. The experiments illustrate that the proposed algorithm manages

31 to solve the place recognition issue in the real-world scenarios and surpass the
state-of-the-art algorithms in terms of assistive navigation performance. On

32 the real-world testing dataset, the online OpenMPR achieves 88.7% precision

33 at 100% recall without illumination changes, and achieves 57.8% precision

34 at 99.3% recall with illumination changes. The OpenMPR is available at

35 https://github.com/chengricky /OpenMultiPR.
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1. Introduction

Vision provides people with the majority of environ-
mental information. Up to 253 million people in
the world are with visual impairments (Bourne, Flax-
man, Braithwaite, Cicinelli, Das, Jonas, Keeffe, Kem-
pen, Leasher, Limburg, Naidoo, Pesudovs, Resnikoff,
Silvester, Stevens, Tahhan, Wong, Taylor, Bourne,
Ackland, Arditi, Barkana, Bozkurt, BRAITHWAITE,
Bron, Budenz, Cai, Casson, Chakravarthy, Choi, Ci-
cinelli, Congdon, Dana, Dandona, Dandona, Das,
Dekaris, Monte, Deva, Dreer, Ellwein, Frazier, Frick,
Friedman, Furtado, Gao, Gazzard, George, Gichuhi,
Gonzalez, Hammond, Hartnett, He, Hejtmancik, Hi-
rai, Huang, Ingram, Javitt, Jonas, Joslin, Keeffe,
Kempen, Khairallah, Khanna, Kim, Lambrou, Lans-
ingh, Lanzetta, Leasher, Lim, LIMBURG, Mansouri,
Mathew, Morse, Munoz, Musch, Naidoo, Nangia,
PALAIOU, Parodi, Pena, Pesudovs, Peto, Quigley,
Raju, Ramulu, Resnikoff, Robin, Rossetti, Saaddine,
SANDAR, Serle, Shen, Shetty, Sieving, Silva, Sil-
vester, Sitorus, Stambolian, Stevens, Taylor, Teje-
dor, Tielsch, Tsilimbaris, van Meurs, Varma, Vir-
gili, Volmink, Wang, Wang, West, Wiedemann, Wong,
Wormald & Zheng 2017), and they encounter various
difficulties in their daily life. The visually impaired
people have limited capability to acquire spatial knowl-
edge (Schinazi, Thrash & Chebat 2016), hence visual
place recognition is desired by the visually impaired
people, especially in the complex and unfamiliar out-
door environments.

Among the decades, GNSS (global navigation
satellite system) has become a prevailing approach
to positioning in many applications, such as vehicle
navigation, engineering measurement and etc. In order
to promote the positioning performance, a number
of GNSS processing methods (Paziewski, Sieradzki &
Baryla 2018, Odolinski & Teunissen 2017, Odolinski,
Teunissen & Odijk 2015, Guo & Zhang 2014, Realini
& Reguzzoni 2013) were proposed by the research
community to reduce the localization error up to
even several millimeters. However, on the low-cost
portable devices, the performance of GNSS localization
is usually insufficient for the localization demands of
the visually impaired people. Compared with that,
optical images containing extra positioning cues could
be exploited to achieve precise localization. Leveraging
images to localize is known as place recognition, which
is to select the corresponding image of a given query
image from database images.

The challenging issues of place recognition lie
in applying the place recognition algorithm to real-
world scenarios, where the visual appearance of query
and database images suffers from variations, such
as illuminance changes and viewpoint changes (Lin,
Cheng, Wang & Yang 2018). With the proliferation of
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computer vision, the challenging place recognition task
has attracted many researchers to make contributions
in this area. Apart from the appearance changes
between database and query images, the navigational
assistance for people with visual impairments brings in
more challenges for the task of place recognition. In
the research area of intelligent vehicles, the stationary
car-mounted cameras capture the images with high
resolution and large field of view, and the accuracy
of around several tens of meters is sufficient for car
localization. However, the images captured by the
wearable devices usually feature low quality, such as
the severe motion blur and the continuously changing
viewpoint. Moreover, assistive navigation requires
more accurate localization, especially at some key
positions like street corners, gates and bus stations.

In our previous work (Cheng, Wang, Lin &
Yang 2018), multimodal images and GNSS data
were used to achieve key position prediction, which
aimed to localize the visually impaired person at the
positions of interest. Besides, we also implemented
Visual Localizer (Lin et al. 2018), which utilized
CNN (convolutional neural network) descriptor and
data association graph to achieve place recognition
for visually impaired people. Aiming at the
scenarios of assistive technology, we propose a real-
time place recognition algorithm OpenMPR (open-
source multimodal place recognition), which extends
our preceding research. In this paper, the multiple
descriptors of multimodal data and parameter tuning
schemes are incorporated to robustify the performance
of place recognition in real world. Compared with
existing algorithms, OpenMPR runs in an online
fashion that only the “past” query images are utilized
for place recognition, hence it could be used on
wearable assistive devices in real time.

The place recognition procedures of OpenMPR
are shown in Figure 1. Multiple descriptors are
extracted from multimodal data in both database and
query sequences, and the multiple distance matrices
are subsequently calculated. Subsequently, the score
matrix is synthesized by the distance matrices of
different modal data. Finally, the place recognition
results are selected from the candidates with high
matching scores. The contributions of this paper are
summarized as follows:

e To cope with the appearance changes in place
recognition, multimodal data, including the
images of different modalities and GNSS data, are
leveraged for place recognition tasks.

e In order to exploit the latent “place fingerprint”
embedded in those data, training-free multiple
image descriptors are utilized. @ The weights
of those descriptors are tuned to improve the
performance of place recognition.

Page 2 of 13
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Figure 1. The schematic diagram of OpenMPR, an open-source
multimodal place recognition algorithm proposed in this paper.

e Aiming at tackling the localization issues of people
with impaired vision, we propose an online place
recognition algorithm OpenMPR that surpasses
the state of the art and a place recognition dataset
collected in the real-world scenarios.

This paper is organized as follows. The related
work on place recognition is described briefly in
Section 2. The place recognition algorithm based
on multimodal data implemented in OpenMPR is
presented in Section 3. Moreover, the comprehensive
performance experiments are detailed in the Section 4.
The last section concludes the paper and presents
future work.

2. State of the Art

Place recognition is a prevalent research topic among
the communities of computer vision and robotics.
According to the types of map abstraction, visual
localization falls into metric place recognition and
topological place recognition (Lowry, Siinderhauf,
Newman, Leonard, Cox, Corke & Milford 2016).
Metric place recognition returns localization results
with metric information. It includes various SLAM
(simultaneous localization and mapping) systems (e.g.
ORB-SLAM2 (Mur-Artal & Tardos 2017)) and deep
pose prediction networks (e.g. PoseNet (Kendall,
Grimes & Cipolla 2015)). Although SLAM systems
build the three-dimensional metric maps which could
be reused to estimate precise camera poses, they are
not suitable for visual localization in changing and
large-scale outdoor environments. The deep networks
though feature superior robustness against appearance
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changes, they need to be trained exclusively for
each region to predict camera poses in that specific
region. For building metric maps, video streams are
required as input data to ensure enough scene overlap
between successive frames, which is not necessarily
available to the wearable assistive devices with limited
computational resources. Therefore, metric place
recognition is not the optimal choice for assistive
technology. Avoiding to build metric maps, topological
place recognition generates localization results without
metric information.  Topological place recognition
is suitable for assistive navigation, considering it
does not require high-performance hardware and ideal
environments.

The community of autonomous vehicles has de-
veloped numbers of algorithms to pursue better per-
formance on topological place recognition. Using
bag-of-word method, OpenFAB-MAP (Glover, Mad-
dern, Warren, Reid, Milford & Wyeth 2012) is one of
earliest open-source packages to achieve appearance-
based place recognition. Different kinds of data were
leveraged in the existing place recognition algorithms.
GNSS priors were exploited in the computationally
expensive matching process based on minimum net-
work flow model (Vysotska, Naseer, Spinello, Burgard
& Stachniss 2015). Sequence-based LDB (local dif-
ference binary) features derived from intensity, gradi-
ent and disparity images were utilized to depict im-
ages and achieved life-long visual localization in Open-
ABLE (Arroyo, Alcantarilla, Bergasa & Romera 2016).
However, the multimodal LDB descriptors were sim-
ply concatenated into single image feature, thus the
weights of different modalities in place recognition
were not considered. Multiple descriptors were lever-
aged to achieve sequence-based image matching (Han,
Wang, Huang & Zhang 2018), but only color im-
ages were used as visual knowledge. Taking advan-
tage of sequence search and match selection, Open-
SeqSLAM2.0 (Talbot, Garg & Milford 2018) designed
configurable parameters to explore the optimal perfor-
mance of place recognition under changing conditions.

The appearance variations impede the perfor-
mance of visual place recognition, and many re-
searchers are dedicated to mitigating the impact of ap-
pearance variations towards place recognition by differ-
ent methods (Lin et al. 2018, Cheng et al. 2018, Kendall
et al. 2015, Arandjelovi¢, Gronat, Torii, Pajdla &
Sivic 2018). The illumination change is one of vital ap-
pearance variations, and quite a few place recognition
algorithms (Maddern, Stewart, McManus, Upcroft,
Churchill & Newman 2014, Lowry & Milford 2016) ad-
dressed the issue. Illumination invariant transforma-
tion was proposed to improve visual localization per-
formance during daylight hours (Maddern et al. 2014).
Change removal based on unsupervised learning was
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utilized to achieve robust place recognition under day-
to-night circumstances (Lowry & Milford 2016). De-
spite the fact that inspiring progress has been obtained
by those work, there are challenging issues to be ad-
dressed on place recognition for assistive navigation,
which has not aroused the sufficient attention of the
research community.

To evaluate the performance of place recognition,
substantial datasets were proposed by the research
community, and some typical datasets feature different
appearance variations between query and database im-
ages. Those datasets involve the cross-season Nordland
dataset (Stinderhauf, Neubert & Protzel 2013) as well
as Gardens Point Walking dataset (Stinderhauf, Shi-
razi, Dayoub, Upcroft & Milford 2015) with viewpoint
and illuminance variations. Bonn dataset (Vysotska
& Stachniss 2017) and Freiburg dataset (Vysotska
et al. 2015) both feature multiple variations, includ-
ing season, illuminance and viewpoint changes. Most
of the datasets are designed for place recognition on
autonomous vehicles, the images captured by car-
mounted cameras are different with those captured by
wearable devices. Besides, the ground truths of those
datasets are labeled with GNSS data, hence the lo-
calization resolution is not sufficient for assistive tech-
nology. To the best of our knowledge, the dataset
with multimodal images for assistive technology has
not been released.

3. OpenMPR

Different from the existing place recognition ap-
proaches, OpenMPR  leverages multimodal data to ad-
dress the issues of place recognition. Apart from vanilla
color images, other visual modalities (i.e. depth im-
ages and infrared images), as well as GNSS data, are
also considered in the system. Multiple descriptors are
utilized to exploit the latent information embedded in
the multimodal images. The distance matrices derived
from the multiple descriptors of query and database
images are merged into a synthetic score matrix. Sub-
sequently, the sequence-based matching and selection
are executed to obtain the final place recognition re-
sults.

3.1. Multiple descriptors extraction from multimodal
1mages

The multimodal images involved in OpenMPR are
color images, depth images and near-infrared images.
The vanilla color image is an indispensable modality
in place recognition task, in that it conveys the both
holistic scenes and local textures with chromatic visual
cues. Compared with color images, infrared images
occupy a longer-wavelength band in spectrum, thus
naturally carry different scene information. Depth
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images contain the three-dimensional shapes, which
reduce the odds of mismatching between query and
database images. In order to describe the scenes
comprehensively, not only are the multimodal images
captured to enrich the input information but also
both holistic and local image descriptors are utilized
to extract the key visual cues embedded in images.
As shown in Figure 2, four training-free and pre-
trained descriptors are chosen to depict scenes, which
avoids the training procedures toward the regions to
be deployed so as to be applied to assistive navigation.
The descriptor vector extracted by descriptor f
from modality m is defined as d”*™ in this paper. The
descriptor f could be one of descriptors in the set

F = {f|GIST, LDB, BoW, CNNY}, (1)

and the modality m could be one of modalities in the
set

M = {m]color, depth, infrared}. (2)

The concrete extraction configurations of those
descriptors have been illustrated in our previous
work (Cheng et al. 2018, Lin et al. 2018). Herein, we
summarize descriptor extraction as follows.

3.1.1. Bag of words Based on the local feature
ORB (oriented FAST and rBRIEF) (Rublee, Rabaud,
Konolige & Bradski 2011), BoW (bag of words)
characterizes the image details by the occurrence of
each visual word clustered by local features. BoW
is widely applied to object and scene categorization,
due to its simplicity, computational efficiency and
invariance to affine transformation (Galvez-Lépez &
Tardos 2012). In this paper, the key points [see
Figure 2 (c1)] are detected by oriented FAST (features
from accelerated segment test) and are described
by rBRIEF (rotated binary robust independent
elementary features). The ORB descriptors of
all key points are merged together and compose
the concatenated descriptors [see Figure 2 (c2)].
Subsequently, the BoW descriptor [see Figure 2 (c3)]
is generated using the extracted ORB descriptors and
the pre-trained vocabularies (Mufloz-Salinas 2017). In
view that the off-the-shelf vocabularies were trained
on photometric images, BoW desceiptors are extracted
from color and infrared modalities.

8.1.2. Local difference binary The holistic image de-
scriptors, i.e. GIST (Oliva & Torralba 2001, Tor-
ralba, Murphy, Freeman & Rubin 2003), LDB (Yang
& Cheng 2014) and CNN descriptors, emphasize whole
visual features rather than local details, hence are used
to alleviate the impact of appearance changes for image
matching. As shown in Figure 2 (a), LDB descriptor is
extracted as a global descriptor after the preprocessing

Page 4 of 13
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Figure 2. The multiple descriptors extracted from the multimodal images.

of illumination invariance transformation. It is worth-
while to note that bit selection (Yang & Cheng 2014) is
not executed in this paper, in that the compression of
the global descriptor hinders the performance of image
description. LDB descriptors are extracted from all of
the modalities separately.

8.1.8.  GIST Also as a holistic image descriptor,
GIST represents the scene in a very low dimensions.
The global descriptor GIST is extracted from the pre-
processed image, which involves image normalization
[see Figure 2 (b1)], Gabor filtering [see Figure 2 (b2)]
and response averaging [see Figure 2 (b3)]. GIST de-
scriptors are extracted from all of the modalities sepa-
rately.

3.1.4. CNN Different from the hand-crafted descrip-
tors above, the descriptors selected from CNN are also
used to enhance the description ability of the sys-
tem. As presented in Figure 2 (d), the CNN descrip-
tor is generated from the intermediate layers of the
pre-trained GoogLeNet fed by the preprocessed color
image. The compressed concatenation of two layers
inception3a/3 x 3 and inception3a/3 x 3_reduce in

GoogLeNet pre-trained on Places365 dataset (Zhou,
Lapedriza, Khosla, Oliva & Torralba 2017) is used
for image descriptor. Constrained by the structure
of GoogLeNet, the CNN descrtiptor is only extracted
from color images.

3.2. Distance matrices with GNSS priors

The extracted multiple descriptors {d”™|f € F,m €
M} are leveraged to measure the similarity between
images, thus to characterize the correspondence of
query images and database images. In this paper,
sequential images, rather than single images, are
utilized during image matching. Assuming that the
query sequence has the size of n and the database
sequence has the size of I, then the distance matrix
features the size of n x I. Herein, we define D/™
as the distance matrix of descrlptor f extracted from
modality m. The element D; ’m of the matrix D/™

attained by measuring the descrlptor distance between
the i-th query image and the j-th database image. The
distance measurement varies from different descriptors.
For binary descriptors (LDB), Hamming distance is
measured as the distance of images, while the distances
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Figure 3. The online cone-based searching schematics.

of GIST and CNN descriptors are measured with
Euclidean distance.

Despite with the insufficient positioning accuracy,
GNSS data consisting the coordinates of longitude and
latitude provide with a priori knowledge for visual
place recognition. With the GNSS priors, those query-
database pairs that leave a large spatial distance
between each other need not be matched, so as to
improve the computational efficiency and to reduce the
possibility of image mismatching. The metric distance
between the i-th query image and the j-th database
image is specified as G;;, hence the final distance
matrix containing GNSS data E/™ is obtained by

Dfm Gii<g
Efm = i.j i =9
bl { Inf. Gi7j >g. ’ (3)

where ¢ is the threshold of possible matching pairs.
The smaller the threshold g, the smaller the searching
range of image matching. Considering the observation
error of the GNSS module used in this paper, the
threshold ¢ should not be too small, the correct
matching results would be ruled out otherwise. In this
paper, g is set to 15 meters.

3.8. Online sequence-base searching and matching
scoring

Having obtained a distance matrix E/™, we execute an
online cone-based searching upon every query-database
pair, which achieves sequential image matching and
gets a matching score for each pair.

As shown in Figure 3, the horizontal axis denotes
the database sequence, and the vertical axis denotes
the query sequence. Within the distance matrix, each
query-database pair (i,7) is associated with only one
cone region which is limited by sequential length ng,
maximal velocity v,,4, and minimal velocity v,,;,. The
online cone-based searching algorithm proposed in this
paper is different from the offline one in (Milford,
Firn, Beattie, Jacobson, Pepperell, Mason, Kimlin

6

& Dunbabin 2014). The offline searching algorithm
makes use of the “future” query images, thus place
recognition cannot run in real time.

Within the region, the number of best-matching
pairs (represented by blue squares in Figure 3) is
counted firstly. The best-matching pair is defined as
the minimum value of a certain row in the distance
matrix. In other words, a query descriptor and the
database descriptor featuring minimum distance with
that query descriptor compose a best-matching pair.
Herein, the number of best-matching pairs in a cone
region is defined as nqech, and the score s; ; of the
query-database pair (4, 7) is defined as
Sij = nmatch. (4)

Ng

Naturally, all of the matching scores s;; form
into a score matrix ST Multiple descriptors
extracted from different modalities carry diverse visual
information, so assigning the same weight to different
descriptors during image matching does not necessarily
promote the matching robustness. Therefore, the
coefficients of score matrix synthesis {\/"™} need to be
adjusted for the better accuracy of place recognition.
The score matrices derived from different descriptors
of different modalities are synthesized to a single score
matrix S, which is presented as

fm fim
fGF,zr:neM)\ x5
Sij = Z INEL : (5)
feEF,meM

The genetic algorithm (Mohammadi, Asadi,
Mohamed, Nelson & Nahavandi 2017) is used to
determine the values of {\/*™}, which is described later
in Section 4. With matching score matrix, each query
image corresponds to the best database image with the
highest score. In order to get the final place recognition
results, the matching score of the best query-database
pair is evaluated to rule out the mismatching pairs.
In this paper, we use score thresholding (Talbot et al.
2018) to remove low-confidence matching results whose
score lower than threshold ¢.

3.4. Implementation

The proposed OpenMPR. algorithm is implemented
in C++, considering the portability and effectiveness.
The open-source code of OpenMPR is available on-
line (Cheng 2019). The dependencies include OpenCV
4.0 (OpenCV 2018), as well as DBoW3& (Muifloz-
Salinas 2017) for BoW extraction, LibGIST (Song
2014) for GIST extraction, libLDB (Yang & Cheng
2014) for LDB extraction, and OpenGA (Mohammadi
et al. 2017) for parameter tuning.

The settings of OpenMPR could be easily switched
by configuration file Config.yaml. There are two modes

Page 6 of 13
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Figure 4. The assistive device Intoer is used to capture
multimodal data.

in OpenMPR, which is testing mode and tuning mode.
In testing mode, the place recognition is executed by
using the default or customized parameters. In tuning
mode, the optimal parameters are searched to achieve
the best performance. The other configurable parts
of OpenMPR involve the resolution of input images,
whether to use GNSS data, and whether to use certain
image modality or image descriptor.

4. Experiments

In this section, the real-world place recognition dataset
collected by the assistive device is illustrated firstly.
In order to achieve the optimal performance of place
recognition, the experiments on parameter tuning
were carried out and the tuning results are analyzed
thoroughly. Finally, the state-of-the-art performance
of OpenMPR is validated through comparative study.
In view that OpenMPR is prone to be implanted
into assistive devices, the experiments were carried out
on the assistive device Intoer (KrVision 2017), which
is shown in Figure 4. The assistive device Intoer is
utilized not only to capture multimodal images and
GNSS data but also to run the OpenMPR algorithm.

4.1. Datasets

In view that the place recognition dataset with
multimodal data has not been released, we collected
a real-world dataset, available at (Cheng 2019), within
the campus of Yuquan, Zhejiang University.

One frame of data consists of a color image,
a depth image, an infrared image, and a GNSS
coordinate. The multimodal images were collected
using Intel RealSense ZR300 Camera (Keselman,
Woodfill, Grunnet-Jepsen & Bhowmik 2017) embedded
in Intoer, which is an infrared assisted stereo vision
camera. In terms of the effective range and density
of depth images, Realsense ZR300 represents the

Table 1. The specifications of multimodal images captured by
ZR300.

Color Depth Infrared

Resolution 320 x 240 320 x 240 320 x 240
Shutter type Rolling Global Global
Frame rate 1 FPS 1 FPS 1 FPS

moderate level among commercial RGB-D cameras.
Thereby, the dataset proposed in this paper is adequate
to evaluate the performance of OpenMPR. Other
imaging specifications are illustrated in Table 1. The
GNSS data were collected with the customized GNSS
receiver embedded in Intorer.

Up to 1,671 frames of data are involved in the
dataset, where the four subsets were collected on three
routes as shown in Table 2 and Figure 5. Although
Train-1 and Train-2 cover the same route, they were
collected in the opposite traversing direction. It is
worthwhile to note that no route overlap exists among
the training subsets and the testing subsets. Moreover,
images of the four subsets are not selected artificially.
In the experiments, Train-1 and Train-2 are utilized
to tune the parameters, and Test-3 and Test-4 are
used to validate the performance of multimodal place
recognition.

Each subset is composed of one query sequence
and one database sequence. The collected multimodal
images feature apparent viewpoint changes between
query and database sequence, since the camera is
embedded in the wearable device and the query and
database were not captured on the completely identical
route.  Apart from that, all of the images also
present dynamic object changes between query and
database. For example, the person passing by in front
of the camera appears in the query sequence, but
does not appear in the database sequence. Moreover,
the illumination changes exist in Train-2 and Test-
4. In those subsets, database and query images were
captured in the afternoon and at dusk separately.
All of those real-world changes form into substantial
challenges for place recognition. In brief, the dataset
was collected in real-world scenarios, and is suitable for
the localization issues of assistive technology.

Due to the inaccuracy of GNSS data, the ground
truth of dataset is labeled manually according to visual
similarity rather than GNSS distance. Each query
image is associated with the best-matching database
image.

4.2. Parameter tuning procedures and results

In order to optimize the performance of place
recognition, a series of parameters are tuned on the
training datasets that are separated from the testing
datasets. The parameters include the length (n,) and



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - MST-108259.R2

OpenMPR

Library

Teaching Building o

Gate

Figure 5. The three traversed paths in multimodal datasets of
place recognition. Route A: from the teaching building to the
gate (orange). Route B: from the teaching building to the library
(green). Route C: from the library to the teaching building
(blue).

Table 2. The characteristics of multimodal place recognition
dataset. v = viewpoint changes, o = dynamic objects, and i =
illumination changes.

Subset  Route # query # database Changes
Train-1 C 212 291 v/o
Train-2 C 208 215 v/o/i
Test-3 A 97 142 v/o
Test-4  A+B 233 273 v/o/i

velocity limits (Vmaz and vp,) of cone searching, the
coefficients of score matrix synthesis (Af"™), and the
threshold ¢ of score thresholding.

If a query image matches with a database image,
the result is defined as a positive result. If no database
image is matched, the result is defined as a negative
result. Considering the query and database images
are sequential in the dataset, the place recognition
result of a query image could be represented as the
sequential index of the best-matching database image.
If the index difference between the place recognition
result and the ground truth is less than or equal to
the tolerance (set to 5 in this paper), the result is
defined as a TP (true positive) result. Otherwise,
the positive result is defined as a FP (false positive)
result. Moreover, if the result should match with
a database image but it does not match with any
database image, the result is defined as a FN (false
negative) result. The performance of OpenMPR is
evaluated and analyzed in terms of precision and recall.
Precision is the proportion of true positives out of all
predicted positives, and recall is the proportion of true
positives to all of actual positives.

TP

P ) 3 = ——

recision = s (6)
TP

Recall = 757N (™)

In this section, the objective of parameter tuning is
to choose the parameters that achieve the greatest Fj

score.

Fl—2x Precision x Recall

(8)

The following section outlines the procedures and
results of configurable parameter tuning.

Precision + Recall”

4.2.1.  Coefficients of score matrix synthesis The
coefficient A\/'™ denotes the importance of specific
descriptor d*™ during place recognition. In order to
tune the coefficients efficiently, we leverage the genetic
algorithm implemented by (Mohammadi et al. 2017)
to seek the optimal combination of coefficients. The
length of the cone region (n,) is set to 1, in order
that the sequential searching does not affect coefficient
optimization.

The genetic algorithm is an analogue of natural
selection, which optimizes the parameters (genes) by
the bio-inspired operators such as mutation, crossover
and selection. The coefficient array with the size
of 9 (see Table 3) is defined as the genes, and
the fitness of genes is evaluated with the F) score
at that coefficient combination. The principles and
implementation details of the genetic algorithm could
be found in (Mohammadi et al. 2017). Empirically,
the maximum number of generations (80 in this paper)
is set as the stopping criterion, which is sufficient for
the genetic algorithm to generate a stable iterative
result. The genetic algorithm runs for multiple times
(15 in this paper) with randomly initialized genes to
avoid the local optima. The mean coefficients of the
multiple results obtained by the genetic algorithm are
set as final parameter searching results. The mean
coefficients of the two datasets are chosen as the
optimal parameters, as presented in Table 3.

As demonstrated in Table 2, Train-1 suffers from
viewpoint changes and dynamic objects, meanwhile
Train-2 suffers from more illumination changes than
Train-1. On Train-2, the CNN descriptor presents
the highest weights compared with other descriptors,
which illustrates that the descriptors derived from the
GoogLeNet pre-trained on Places365 yield superior de-
scription performance even under the severe changes.
On dataset 1, the GIST descriptors show better de-
scription performance compared with other descrip-
tors, which indicates that GIST descriptor is suitable
for depicting the images without large illumination
changes. Besides, LDB presents the suboptimal per-
formance of place recognition in the complicated envi-
ronments. The dataset used in this paper features se-
vere viewpoint changes and dynamic objects, hence the
holistic descriptors are important to grasp the global
information.

Compared with the holistic descriptors, the
performance of BoW descriptors on the two datasets
reveals that BoW is advantageous and stable for place
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Table 3. The searching results of coefficients Af>™ using the genetic algorithm. (c=color, d=depth, i=infrared.)

R N
Train-1 1.359 1.666 2.269 1.102 0.986 0.617 0.469 1.042 0.491 0.73
Train-2 1.132 1.705 0.889 1.081 0.989 0.436 0.778 0.638 2.353 0.63
Optimal 1.245 1.685 1.579 1.091 0.987 0.526 0.623 0.840 1.422 -
recognition in various environments. More conclusions 1

can be drawn when inspecting the results on color and 08

infrared modality carefully. The BoW descriptor on °

the infrared modality features a higher weight than §0-5

that on color modality. The reasonable explanation 2 04

is that the local ORB features are susceptible to image L

details with motion blur, which is prone to occur on 0.2

color images captured with the rolling shutter. On 0

the contrary, the infrared modality features better 0 01 02 03 04 05 06 07 08
performance on imaging stability thanks to the global Vi

shutter.

4.2.2.  Parameters of cone-based searching Having
chosen the optimal coefficients (shown in Table 3), the
tuning procedures of other parameters are executed.
The parameters of cone-based searching algorithm
include the length of sequence (n,) and velocity limits
(Umaz and Upmg,). They represent the quantity of
information used in cone searching. In parameter
sweeping, the maximal velocity (vmaz) is set as the
reciprocal of the minimal velocity (vyn:n), so there are
only two parameters to be tuned. The minimal velocity
(Umin) is varied from 0.1 to 0.75, and the length (n,)
is varied from 3 to the 79.

Different velocity limits of cone-based searching
are utilized to test the performance of place recog-
nition. The Figure 6 demonstrates that v,,;, > 0.4
(Umaz < 2.5) features good performance, and that
the larger velocity range results in suboptimal per-
formance. The large searching range introduces more
best-matching pairs, meanwhile introduces more po-
tential inaccurate results. The velocity limits should
be moderate to tolerant the real-world scenarios, such
as the inconsistency of the carrier’s walking speed when
recording query and database sequences. Thereby, we
set Vpmin = 0.4, and vy,q. = 2.5.

As shown in Figure 7, the performance of place
recognition is related to the length of searching
sequence (ng). Whether n, is too large or too small, the
performance is limited. For the sake of computational
efficiency, we set the optimal parameter n, as 10.

4.2.8. Threshold of score thresholding The threshold
score thresholding ¢ affects the precision and recall
of place recognition. The score threshold ¢ is used
to eliminate bad matching results and improve the
performance of place recognition. As shown in

Figure 6. The parameter sweeping results of vy,

0.8
® M
506
[&]
< 0.4
— (). .
L Train-1
0.2 ——Train-2
0
0 10 20 30 40

Ng

Figure 7. The parameter sweeping results of ng.

Figure 8, the precision-recall curve under different
thresholds t is plotted. As the threshold is low,
the matching results with low confidence influence
the precision of place recognition. On the contrary,
the high threshold results in low recall rate. The
optimal value of threshold ¢ is set to 0.16, where the
recall has not descended substantially and the precision
maintains at a high level.

4.3. Validation of OpenMPR

In order to validate the parameter tuning results and
the systematic performance of OpenMPR, the testing
sets whose routes are different from those of training
sets are utilized to evaluate the proposed algorithm.
As demonstrated in Table 2, viewpoint changes and
dynamic objects exist in both subsets, meanwhile
illumination changes are introduced in Test-4.

4.8.1. Validation of optimized coefficients To validate
the effectiveness of optimized coefficients {\/™}, the
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Figure 8. The precision-recall curve as sweeping parameter ¢.

place recognition performance on different coefficient
configurations is compared. In addition to optimized
coeflicients, the other configuration involves

(1) A = 1: let all of the coeflicients be 1,
which means that all descriptors feature the same
importance.

(2) w/o certain descriptor: let the coefficients
of the corresponding descriptor be 0, which means
abandoning that descriptor in the system.

The mean localization error of different coefficient
configurations is shown in Figure 9. Herein, the
localization error refers to the index difference between
the OpenMPR result and the ground truth. The
mean localization error is obtained by averaging the
localization error of all query images in the testing
set. It is concluded that the configuration of optimized
coefficients shows the balanced performance on both
testing sets, though it is not the best configuration on
the single dataset.

On both testing sets, the configuration w/o BoW
features the worst performance, which illustrates that
BoW descriptor is essential for place recognition. On
Test-3, the configuration w/o CNN yields the optimal
performance, and the configuration w/o GIST shows
the suboptimal performance. Those phenomena are
consistent with the analysis in Section 4.2.1 that
the GIST descriptor, instead of the CNN descriptor,
plays the vital role in place recognition if there is
no illumination changes. In contrast, on the testing
set with illumination changes, the GIST descriptor
is no longer eligible for good performance, the CNN
descriptor and the other descriptors are indispensable.

4.8.2. Validation of systematic performance With the
optimal parameters determined in the preceding sec-
tions, the place recognition results of OpenMPR on
the two testing sets are compared with the state-
of-the-art place recognition algorithms. OpenSeqS-

10
12
9
6
3 I
o MWm l |
Test-3 Test-4
mOptima m)=1 w/o CNN
= w/o GIST mw/o LDB mw/o Bow
Figure 9. The mean localization error under different

configurations of parameters.

Table 4. The place recognition results on the testing datasets.

Algorithm ~ Subset  Precision Recall Error
Test-3 88.7% 100.0% 1.33

OpenMPR  roga 57.8% 99.3%  7.59
OpenSeq- Test-3 26.6% 34.0% 7.80
SLAM2.0 Test-4 25.7% 82.0% 4791
Visual Test-3 48.5% 100% 19.14
Localizer Test-4 58.4% 100% 9.99

LAM2.0 (Talbot et al. 2018) and Visual Localizer (Lin
et al. 2018) are chosen as the baselines of Open-
MPR. Though OpenSeqSLAM2.0 was designed for vi-
sual place recognition on autonomous vehicles, it pro-
vides with important inspirations in terms of sequence
searching and matching selection techniques. In the ex-
periments, the OpenSeqSLAM?2.0 parameters related
to sequence searching and matching selection were set
to those optimal values presented above. As a prelim-
inary work, Visual Localizer proposed a place recog-
nition solution for the mobility of visually impaired
people using pretrained CNN descriptors and global
optimization.

As shown in Table 4, the three performance
indicators (precision, recall and mean localization
error) are leveraged to evaluate the results of
OpenMPR on the two testing sets. In terms of mean
localization error, the proposed OpenMPR is superior
to the two state-of-the-art algorithms. According
to the statistics of OpenMPR, the place recognition
on Test-3 is more precise than that on Test-4, in
that fewer appearance changes are involved in Test-
3. Fortunately, with the help of the multiple
descriptors extracted from multimodal images, the
mean localization error of OpenMPR on Test-4 is
acceptable, which slightly exceeds the tolerance of 5.
GNSS priors play an important role in ruling out the
definite negatives during image matching.

Compared with OpenMPR, OpenSeqSLAM?2.0
yields inferior localization performance both on Test-
3 and Test-4, in view of the low recall and large
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localization error. Apparently, OpenSeqSLAM?2.0 that
measures the similarity of images via sum of absolute
differences of normalized images does not make
place recognition robust against various appearance
changes. The comparison between OpenMPR and
OpenSeqSLAM justifies that the proposed image
descriptors robustify place recognition under practical
conditions. For Visual Localizer, the performance
of Test-4 with more appearance changes surpasses
that of Test-3, which resembles the phenomenon that
CNN descriptor features a higher weight on Train-
2 than on Train-1. It is evident that the proposed
CNN descriptor (the compressed concatenation of
inception3a/3 x 3 and inception3a/3 x 3_reduce)
is capable of extracting effective semantic “place
fingerprint” between images with large appearance
changes. However, without the aid of other descriptors
and multimodal images, the performance of the CNN
descriptor on Test-3 is limited, which further confirms
that the necessity of multiple descriptors proposed in
this paper.

As shown in Figure 10, the place recognition
result of OpenMPR is visualized as a visualization
matrix with the size of n x [, where n is the number
of query images and [ is the number of database
images. The element of the matrix denotes the
query-database pair. In the matrix, green and red
points denote ground truths (with the tolerance of
5) and localization results respectively. From the
diagrams, it is concluded that the place recognition
results basically conform to the corresponding ground
truths, despite the serious viewpoint variation, motion
blur and dynamic objects (e.g. pedestrians). FEven
on Test-4 with obvious illumination changes, most of
the mismatching images are not far from the tolerance
of place recognition. In Figure 10, some successful
matching results are presented, which indicates that
OpenMPR still recognizes places under the conditions
of various appearance changes.

Real-time performance is crucial for assistive navi-
gation. OpenSeqSLAM2.0 uses both the “past” images
and the “future” images during cone-based searching,
hence it cannot be used in real time. Unfortunately,
network flow-based global optimization scheme em-
bedded in Visual Localizer features inferior computa-
tional efficiency. The single-frame computation speed
is analyzed on the Inoter with Intel Atom x5-Z8500
and a desktop with Inter Core i5-6500 to evaluate the
real-time performance of OpenMPR, as shown in Ta-
ble 5. The real-time requirement is basically satisfied
by OpenMPR according to the results on the Intoer.
With the update of Intoer hardware, the real-time per-
formance would be further improved in view of the
speed test on the desktop. After inspecting the running
time of descriptor extraction, it is found that time con-
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Table 5. The real-time performance of OpenMPR on different
platforms.

Platform Descrlpjcor Matching Overall
Extraction
Intel Atom
<5-78500 2,056 ms 98 ms 2,154 ms
Intel Core
$5-6500 362 ms 25 ms 387 ms

sumed during extracting GIST descriptors from multi-
modal images accounts for the major proportion (more
than 80% of descriptor extraction). In the future, ap-
plying GIST library with superior computational effi-
ciency to OpenMPR leads to better real-time perfor-
mance of the system.

5. Conclusion

Different with the majority of place recognition work,
this paper focus on the traveling demands of visually
impaired people, and propose an open-source software
OpenMPR, which leverages multi-modal data for
online place recognition task.

In the area of assistive technology, the wearable
camera tends to capture images with motion blur and
low resolution. Due to the limited computational
resource, discrete images (one image per second in this
paper), instead of video streams, are captured and
processed on the portable devices. Apart from that,
the query and database sequences features various
appearance changes, including viewpoint changes,
illumination changes and dynamic objects. In
those real-world scenarios, the proposed OpenMPR
utilizes configured multiple descriptors extracted from
multimodal data and online sequence-based searching
to obtain good place recognition performance. It
achieves 88.7% precision at 100% recall without
illumination changes, and achieves 57.8% precision at
99.3% recall with illumination changes.

In the future, we plan to achieve semantic place
recognition, where the visual information in images is
understood and places are autonomously labeled with
different levels of importance.
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