121 research outputs found
Recommended from our members
Towards green computing oriented security: a lightweight postquantum signature for IoE
Postquantum cryptography for elevating security against attacks by quantum computers in the Internet of Everything (IoE) is still in its infancy. Most postquantum based cryptosystems have longer keys and signature sizes and require more computations that span several orders of magnitude in energy consumption and computation time, hence the sizes of the keys and signature are considered as another aspect of security by green design. To address these issues, the security solutions should migrate to the advanced and potent methods for protection against quantum attacks and offer energy efficient and faster cryptocomputations. In this context, a novel security framework Lightweight Postquantum ID-based Signature (LPQS) for secure communication in the IoE environment is presented. The proposed LPQS framework incorporates a supersingular isogeny curve to present a digital signature with small key sizes which is quantum-resistant. To reduce the size of the keys, compressed curves are used and the validation of the signature depends on the commutative property of the curves. The unforgeability of LPQS under an adaptively chosen message attack is proved. Security analysis and the experimental validation of LPQS are performed under a realistic software simulation environment to assess its lightweight performance considering embedded nodes. It is evident that the size of keys and the signature of LPQS is smaller than that of existing signature-based postquantum security techniques for IoE. It is robust in the postquantum environment and efficient in terms of energy and computations
FSM-F: finite state machine based framework for denial of service and intrusion detection in manet
Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-theart techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks
Recommended from our members
Inter Vehicle Distance based connectivity aware routing in vehicular adhoc networks
Connectivity in vehicular traffic environment has witnessed significant attention due to the direct impact on the performance of most of the traffic safety applications of intelligent transport system. Various parameters such as density, speed, direction, link quality and inter vehicle distance (IVD) have been utilized for measuring connectivity. IVD has greater impact on connectivity and controls the impact of other parameters. Usage of real time IVD for measuring connectivity has not received sufficient attention in VANETs. This paper proposes IVD based connectivity aware routing (Ivd-CAR) for enhancing connectivity aware data dissemination. IVD calculation is robust and can effectively handle instantaneous GPS failure. Two localization techniques; namely, cooperative localization and Geometry based Localization are developed. Standard deviation of real time IVDs of a forwarding path is derived. Distribution of IVDs of a forwarding path is employed for estimating connectivity. Segment vehicle based next hop vehicle selection is utilized for incorporating network load, link quality and direction into consideration while selecting forwarding path. Simulations are carried out in ns2 to evaluate the performance of Ivd-CAR in realistic traffic environment. Comparative analysis of simulation results attests the superiority of Ivd-CAR to the state-of-the-art techniques: CSR and A-CAR
F3TM: flooding factor based trust management framework for secure data transmission in MANETs
Due to the absence of infrastructure support, secure data dissemination is a challenging task in scalable mobile ad hoc networks (MANETs) environment. In most of the traditional routing techniques for MANETs, either security has not been taken into account or only one aspect of security concern has been addressed without optimizing the routing performance. This paper proposes Flooding Factor based Framework for Trust Management (F3TM) in MANETs. True flooding approach is utilized to identify attacker nodes based on the calculation of trust value. Route Discovery Algorithm is developed to discover an efficient and secure path for data forwarding using Experimental Grey Wolf algorithm for validating network nodes. Enhanced Multi-Swarm Optimization is used to optimize the identified delivery path. Simulations are carried out in ns2 to assess and compare the performance of F3TM with the state-of-the-art frameworks: CORMAN and PRIME considering the metrics including delay, packet delivery ration, overhead and throughput. The performance assessment attests the reliable security of F3TM compared to the state-of-the-art frameworks
Towards green computing for Internet of Things: energy oriented path and message scheduling approach
Recently, energy efficiency in sensor enabled wire-less network domain has witnessed significant attention from both academia and industries. It is an enabling technological advancement towards green computing in Internet of Things (IoT) eventually supporting sensor generated big data processing for smart cities. Related literature on energy efficiency in sensor enabled wireless network environments focuses on one aspects either energy oriented path selection or energy oriented message scheduling. The definition of path also varies in literature without considering links towards energy efficiency. In this context, this paper proposes an energy oriented path selection and message scheduling framework for sensor enabled wireless network environments. The technical novelty focuses on effective cooperation between path selection and message scheduling considering links on path, location of message sender, and number of processor in sensor towards energy efficiency. Specifically, a path selection strategy is developed based on shortest path and less number of links on path (SPLL). The location of message sender, and number of processor in specific sensor are utilized for developing a longer hops (LH) message scheduling approach. A system model is presented based on M/M/1 queuing analysis to showcase the effective cooperation of SPLL and LH towards energy efficiency. Simulation oriented comparative performance evaluation attest the energy efficiency of the proposed framework as compared to the state-of-the-art techniques considering number of energy oriented metrics
Mobile edge computing for big-data-enabled electric vehicle charging
As one of the key drivers of smart grid, EVs are environment-friendly to alleviate CO2 pollution. Big data analytics could enable the move from Internet of EVs, to optimized EV charging in smart transportation. In this article, we propose a MECbased system, in line with a big data-driven planning strategy, for CS charging. The GC as cloud server further facilitates analytics of big data, from CSs (service providers) and on-the-move EVs (mobile clients), to predict the charging availability of CSs. Mobility-aware MEC servers interact with opportunistically encountered EVs to disseminate CSs' predicted charging availability, collect EVs' driving big data, and implement decentralized computing on data mining and aggregation. The case study shows the benefits of the MEC-based system in terms of communication efficiency (with repeated monitoring of a traffic jam) concerning the long-term popularity of EVs
A COVID-19-Based Modified Epidemiological Model and Technological Approaches to Help Vulnerable Individuals Emerge from the Lockdown in the UK
COVID-19 has shown a relatively low case fatality rate in young healthy individuals, with the majority of this group being asymptomatic or having mild symptoms. However, the severity of the disease among the elderly as well as in individuals with underlying health conditions has caused significant mortality rates worldwide. Understanding this variance amongst different sectors of society and modelling this will enable the different levels of risk to be determined to enable strategies to be applied to different groups. Long-established compartmental epidemiological models like SIR and SEIR do not account for the variability encountered in the severity of the SARS-CoV-2 disease across different population groups. The objective of this study is to investigate how a reduction in the exposure of vulnerable individuals to COVID-19 can minimise the number of deaths caused by the disease, using the UK as a case study. To overcome the limitation of long-established compartmental epidemiological models, it is proposed that a modified model, namely SEIR-v, through which the population is separated into two groups regarding their vulnerability to SARS-CoV-2 is applied. This enables the analysis of the spread of the epidemic when different contention measures are applied to different groups in society regarding their vulnerability to the disease. A Monte Carlo simulation (100,000 runs) along the proposed SEIR-v model is used to study the number of deaths which could be avoided as a function of the decrease in the exposure of vulnerable individuals to the disease. The results indicate a large number of deaths could be avoided by a slight realistic decrease in the exposure of vulnerable groups to the disease. The mean values across the simulations indicate 3681 and 7460 lives could be saved when such exposure is reduced by 10% and 20% respectively. From the encouraging results of the modelling a number of mechanisms are proposed to limit the exposure of vulnerable individuals to the disease. One option could be the provision of a wristband to vulnerable people and those without a smartphone and contact-tracing app, filling the gap created by systems relying on smartphone apps only. By combining very dense contact tracing data from smartphone apps and wristband signals with information about infection status and symptoms, vulnerable people can be protected and kept safer
Recommended from our members
Position verification in connected vehicles for cyber resilience using geofencing and fuzzy logic
Position verification is essential in connected and autonomous vehicle technology to enable secure vehicle-to-everything communication. Previous attempts to verify location information have used specific hardware, traffic parameters, and statistical model-based techniques dependent on neighbouring vehicles and roadside infrastructure and whose judgements can be influenced by untrustworthy entities. Considering the back-and-forth communications during verification, these techniques are also unsuitable in the dynamic vehicular networking environment. In this context, this paper proposes a self-reliant trust-based position verification technique using dynamic geofencing, neural network, and Mamdani fuzzy logic controller. The method uses vehicular dynamics, such as distance between the sender and receiver vehicles, magnitude of the speed difference, and direction, to verify the trustworthiness of vehicle positions. An experimental analysis of a dataset of simulated driving scenarios in MATLAB demonstrates that the feedforward neural network records the highest direction classification performance at 99.8% in conjunction with the centroid defuzzification method. Subsequently, further quantitative analysis, including the Receiver Operating Characteristic curve with Area Under Curve and trust level distribution histograms, indicates that the suggested classification model outperforms a random classifier and effectively identifies false position data from the actual during trust computation
Recommended from our members
Neurocomputing for internet of things: object recognition and detection strategy
Modern and new integrated technologies have changed the traditional systems by using more advanced machine learning, artificial intelligence methods, new generation standards, and smart and intelligent devices. The new integrated networks like the Internet of Things (IoT) and 5G standards offer various benefits and services. However, these networks have suffered from multiple object detection, localization, and classification issues. Conventional Neural Networks (CNN) and their variants have been adopted for object detection, classification, and localization in IoT networks to create autonomous devices to make decisions and perform tasks without human intervention and helpful to learn in-depth features. Motivated by these facts, this paper investigates existing object detection and recognition techniques by using CNN models used in IoT networks. This paper presents a Conventional Neural Networks for 5G-Enabled Internet of Things Network (CNN-5GIoT) model for moving and static objects in IoT networks after a detailed comparison. The proposed model is evaluated with existing models to check the accuracy of real-time tracking. The proposed model is more efficient for real-time object detection and recognition than conventional methods
- …