12,093 research outputs found
reaction near threshold
We analyze the total cross section data for near threshold
measured recently at SATURNE. Using an effective range approximation for the
on-shell S-wave final state interaction we extract from these data the
modulus fm of the threshold transition amplitude
. We present a calculation of various (tree-level) meson exchange
diagrams contributing to . It is essential that -emission from
the anomalous -vertex interferes destructively with
-emission from the proton lines. The contribution of scalar
-meson exchange to turns out to be negligibly small. Without
introducing off-shell meson-nucleon form factors the experimental value
fm can be reproduced with an -coupling constant
of . The results of the present approach agree qualitatively
with the J\"ulich model. We also perform a combined analysis of the reactions
and near threshold.Comment: Latex-file 6 pages, 2 Figure
Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector spin-orbit terms
We extend a recent calculation of the nuclear energy density functional in
the systematic framework of chiral perturbation theory by computing the
isovector spin-orbit terms: . The calculation
includes the one-pion exchange Fock diagram and the iterated one-pion exchange
Hartree and Fock diagrams. From these few leading order contributions in the
small momentum expansion one obtains already a good equation of state of
isospin-symmetric nuclear matter. We find that the parameterfree results for
the (density-dependent) strength functions and agree
fairly well with that of phenomenological Skyrme forces for densities . At very low densities a strong variation of the strength functions
and with density sets in. This has to do with chiral
singularities and the presence of two competing small mass scales
and . The novel density dependencies of and
as predicted by our parameterfree (leading order) calculation should
be examined in nuclear structure calculations.Comment: 9 pages, 3 figure, published in: Physical Review C68, 014323 (2003
Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys
We show that the measurement of the baryonic acoustic oscillations in large
high redshift galaxy surveys offers a precision route to the measurement of
dark energy. The cosmic microwave background provides the scale of the
oscillations as a standard ruler that can be measured in the clustering of
galaxies, thereby yielding the Hubble parameter and angular diameter distance
as a function of redshift. This, in turn, enables one to probe dark energy. We
use a Fisher matrix formalism to study the statistical errors for redshift
surveys up to z=3 and report errors on cosmography while marginalizing over a
large number of cosmological parameters including a time-dependent equation of
state. With redshifts surveys combined with cosmic microwave background
satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and
0.28 on dw(z)/dz for cosmological constant model. Models with less negative
w(z) permit tighter constraints. We test and discuss the dependence of
performance on redshift, survey conditions, and fiducial model. We find results
that are competitive with the performance of future supernovae Ia surveys. We
conclude that redshift surveys offer a promising independent route to the
measurement of dark energy.Comment: submitted to ApJ, 24 pages, LaTe
Brittle Rock Failure in the Steg Lateral Adit of the Lötschberg Base Tunnel
Summary: During the crossing of brittle rock formations at the Lötschberg base tunnel, failure phenomena have been observed both at the tunnel face and at the walls. A detailed analysis has been undertaken to explain these behaviours, based on the recent developments of Canadian research on brittle failure mechanisms. At the tunnel walls, a very good agreement is found between the calculated and observed damage and between two prediction methods, i.e. a semi-empirical failure criterion and elastic calculations with the "brittle Hoek-Brown parameters.â Near the face, due to the 3D nature of the stress conditions, some limitations of these approaches have been highlighted, and the growth of wall failure has been analysed. This research allowed a better understanding of the brittle rock mass behaviour at the Lötschberg base tunnel and showed that brittle failure processes dominate the behaviour of deep, highly stressed excavations in massive to moderately jointed rock. It also illustrates where improvements to the adopted approaches are require
A New Shear Estimator for Weak Lensing Observations
We present a new shear estimator for weak lensing observations which properly
accounts for the effects of a realistic point spread function (PSF). Images of
faint galaxies are subject to gravitational shearing followed by smearing with
the instrumental and/or atmospheric PSF. We construct a `finite resolution
shear operator' which when applied to an observed image has the same effect as
a gravitational shear applied prior to smearing. This operator allows one to
calibrate essentially any shear estimator. We then specialize to the case of
weighted second moment shear estimators. We compute the shear polarizability
which gives the response of an individual galaxy's polarization to a
gravitational shear. We then compute the response of the population of
galaxies, and thereby construct an optimal weighting scheme for combining shear
estimates from galaxies of various shapes, luminosities and sizes. We define a
figure of merit --- an inverse shear variance per unit solid angle --- which
characterizes the quality of image data for shear measurement. The new method
is tested with simulated image data. We discuss the correction for anisotropy
of the PSF and propose a new technique involving measuring shapes from images
which have been convolved with a re-circularizing PSF. We draw attention to a
hitherto ignored noise related bias and show how this can be analyzed and
corrected for. The analysis here draws heavily on the properties of real PSF's
and we include as an appendix a brief review, highlighting those aspects which
are relevant for weak lensing.Comment: 39 pages, 9 figure
Integrated Diamond Optics for Single Photon Detection
Optical detection of single defect centers in the solid state is a key
element of novel quantum technologies. This includes the generation of single
photons and quantum information processing. Unfortunately the brightness of
such atomic emitters is limited. Therefore we experimentally demonstrate a
novel and simple approach that uses off-the-shelf optical elements. The key
component is a solid immersion lens made of diamond, the host material for
single color centers. We improve the excitation and detection of single
emitters by one order of magnitude, as predicted by theory.Comment: 10 pages, 3 figure
A Kohn-Sham system at zero temperature
An one-dimensional Kohn-Sham system for spin particles is considered which
effectively describes semiconductor {nano}structures and which is investigated
at zero temperature. We prove the existence of solutions and derive a priori
estimates. For this purpose we find estimates for eigenvalues of the
Schr\"odinger operator with effective Kohn-Sham potential and obtain
-bounds of the associated particle density operator. Afterwards,
compactness and continuity results allow to apply Schauder's fixed point
theorem. In case of vanishing exchange-correlation potential uniqueness is
shown by monotonicity arguments. Finally, we investigate the behavior of the
system if the temperature approaches zero.Comment: 27 page
Constraining quasar host halo masses with the strength of nearby Lyman-alpha forest absorption
Using cosmological hydrodynamic simulations we measure the mean transmitted
flux in the Lyman alpha forest for quasar sightlines that pass near a
foreground quasar. We find that the trend of absorption with pixel-quasar
separation distance can be fitted using a simple power law form including the
usual correlation function parameters r_{0} and \gamma so that ( = \sum
exp(-tau_eff*(1+(r/r_{0})^(-\gamma)))). From the simulations we find the
relation between r_{0} and quasar mass and formulate this as a way to estimate
quasar host dark matter halo masses, quantifying uncertainties due to
cosmological and IGM parameters, and redshift errors. With this method, we
examine data for ~3000 quasars from the Sloan Digital Sky Survey (SDSS) Data
Release 3, assuming that the effect of ionizing radiation from quasars (the
so-called transverse proximity effect) is unimportant (no evidence for it is
seen in the data.) We find that the best fit host halo mass for SDSS quasars
with mean redshift z=3 and absolute G band magnitude -27.5 is log10(M/M_sun) =
12.48^{+0.53}_{-0.89}. We also use the Lyman-Break Galaxy (LBG) and Lyman alpha
forest data of Adelberger et al in a similar fashion to constrain the halo mass
of LBGs to be log10(M/M_sun) = 11.13^{+0.39}_{-0.55}, a factor of ~20 lower
than the bright quasars. In addition, we study the redshift distortions of the
Lyman alpha forest around quasars, using the simulations. We use the quadrupole
to monopole ratio of the quasar-Lyman alpha forest correlation function as a
measure of the squashing effect. We find that this does not have a measurable
dependence on halo mass, but may be useful for constraining cosmic geometry.Comment: 10 pages, 11 figures, submitted to MNRA
- âŠ