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Abstract During the crossing of brittle rock formations at the Lötschberg base

tunnel, failure phenomena have been observed both at the tunnel face and at the

walls. A detailed analysis has been undertaken to explain these behaviours, based on

the recent developments of Canadian research on brittle failure mechanisms. At the

tunnel walls, a very good agreement is found between the calculated and observed

damage and between two prediction methods, i.e. a semi-empirical failure criterion

and elastic calculations with the ‘‘brittle Hoek-Brown parameters.’’ Near the face,

due to the 3D nature of the stress conditions, some limitations of these approaches

have been highlighted, and the growth of wall failure has been analysed. This

research allowed a better understanding of the brittle rock mass behaviour at the

Lötschberg base tunnel and showed that brittle failure processes dominate the

behaviour of deep, highly stressed excavations in massive to moderately jointed

rock. It also illustrates where improvements to the adopted approaches are required.
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1 Introduction

In the last several decades, the growing need for fast, reliable and cost-effective

transport systems has led to new challenges in tunnel design and construction. In

particular, deep tunnels such as the Lötschberg or the Gotthard base tunnels are

being built in Switzerland through the Alps and require facing specific geological

and geo-mechanical challenges under conditions of high stress. In this context,

issues related to brittle failure and ground control, historically encountered in deep

mines, are now of particular interest for tunnels.

1.1 The Lötschberg Base Tunnel and the Steg Lateral Adit

The Lötschberg base tunnel is located in Switzerland and links Frutigen, in the

Lanker Valley, to Raron, in the Rhône Valley. Combined with the existing Simplon

tunnel, it constitutes the first transalpine rail axis with end-to-end enlarged cross-

sections and provides a direct link between Germany and Italy through Switzerland.

The tunnel itself is 34.6 km long and consists, for most parts, of two tubes (diameter

around 9.40 m) at a distance of 40 m from each other, linked together every 333 m

through a perpendicular gallery. Two excavation techniques are used, i.e. tunnel-

boring machines (TBM) and drill and blast. In its south part, the tunnel is driven

over nearly 10 km under more than 1,000 m of cover. The maximum overburden is

as high as 2,000 m.

This paper is centred on phenomena that occurred within the Steg lateral adit,

located at the south end of the tunnel. Along this line, the overburden progressively

increases from the portal to nearly 2,000 m just after the intersection with the main

track and consists of massive to moderately jointed rock formations, mainly

consisting of gneiss, granodiorite or granite. A rough description of the local

geology is presented in Fig. 1. As this part of the tunnel was TBM excavated, the

surrounding rock underwent little disturbance, which allowed interpreting the field

data in terms of rock-mass behaviour. When necessary, bolting, meshing and

shotcrete were the main support systems.

Crystalline Aare basement 

Triassic and Liassic zone 

Granite 
Granodiorite 
Gneiss 

2000 m 

Fig. 1 Geological model of the south part of the Lötschberg tunnel
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1.2 Observed Phenomena in the Steg Lateral Adit

Two different kinds of problems were reported during the excavation of the Steg

lateral adit. Their typology, depicted below, was established through field surveys

and meetings with the design office IngenieurGemeinschaft WestSchweiz (IGWS)

in charge of the executive studies, with the project geologists and with workers in

the field.

A first phenomenon, reported by field workers as ‘‘block formation’’ in front of

the TBM head, consisted of blocks with a predominantly slab-like shape (Kaiser

2005) loosening from the tunnel face. They jammed conveyor intake, provoked

frequent disk and bearing failure, caused more wear and tear on the TBM heads and

discs, thus, increasing maintenance requirements and costs and reducing the rate of

advance. When these instabilities appeared, instead of showing a flat face with clear

marks from the cutters, the tunnel face was quite irregular and the cutter tracks were

only visible in sections without breakouts. A high variability was noticed in the

intensity of the phenomenon; sometimes, almost the entire face was damaged

(Kaiser 2005) but, often, only a small proportion failed.

The second observed phenomenon consisted of scales of low thickness peeling

off the walls inside the excavation. When high overburden depth was encountered,

around station 3000 and more, deep notches (up to about 1 m locally) could

appear, typically in a symmetrical pattern. At moderate stress levels, failure was

often non-symmetric, i.e. one-sided. Most often, these onion-skinning and

notching phenomena were noticed in zones of strong massive rock. The shape

of the notches appeared to be independent of the natural, steeply dipping foliation

planes. Some strong acoustic phenomena were also reported, but violent ejections

of blocks were rarely observed. Apparently, most energy releases occurred within

4 m from the face, i.e. within the TBM shield; however, some delayed strainburst/

spalling was observed, with failure zones appearing after some time, especially

during longer stoppages of the TBM. In some cases, the notches prevented the

grippers from having a good contact with the rock mass, which caused some

output losses.

To quantify this second phenomenon, a systematic inventory of the failure zones

with a rough estimate of their depth was performed in the field along the first

4,000 m of the Steg track. The main results in terms of the observed depth of failure

are given in Fig. 2. As can be seen, up to TM 3500 approximately, the spalling

process was generally localised or limited to distinct zones. Overall, about 30% of

the tunnel from the location with first signs of spalling at station 800 onwards

showed obvious signs of spalling.

1.3 Context of the Research

The brittle behaviour of rock under high stress is a quite common statement for geo-

engineers. However, the precise understanding of its consequences on underground

works is still a topical problem. In recent years, the research carried out at the

Canadian AECL Underground Research Laboratory (URL), Pinawa, Manitoba,

Canada, strongly contributed to the understanding of stress-driven brittle behaviours
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by proposing new failure processes and various criteria for depth-of-failure

assessment.

In this context, the research performed at the Rock Mechanics Laboratory of the

Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland, with the

expert contribution of the co-author, aimed at analysing whether the failure criteria

developed from the Canadian brittle rock failure research programme and from field

experience could describe the phenomena reported in the Steg lateral adit of the

Lötschberg base tunnel (Rojat et al. 2002). This paper summarises the main steps

and results of the study and highlights some of the advantages and limitations of the

method.

2 Review of the Theoretical Concepts of Brittle Failure Around Tunnels

2.1 Qualitative Overview of Stress-Induced Brittle Failure

Many researchers have shown that the brittle failure process initiates with the

growth of microcracks in the direction of the maximum applied load or principal

stress. The Griffith theory (Griffith 1924) indicates that an elliptic crack oriented

with a critical angle tends to extend in the direction of the major principal stress.

Likewise, Horii and Nemat-Nasser (1985) described a mechanism (‘‘crack-

kinking’’) by which a crack, initially inclined to the principal stresses, would

extend in the direction of the major principal stress. In their experiments with the

compression of resin, they showed that the presence of a free surface had the effect

of inducing crack-kinking in the vicinity of the free surface and that the cracks then

followed more or less the free-surface contour.

In tunnels, induced cracking initiates as a result of the removal of the confining

stress and the loading by tangential stresses. The cracks then extend parallel to the
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Fig. 2 Inventory of the failure zones at tunnel walls along the Steg lateral adit
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walls, forming slabs of rock that may bulk, buckle or explosively break. Intuitively,

one would expect for a massive rock that these stress-induced damage phenomena

would occur when the rock is loaded beyond its unconfined compressive strength. In

fact, as explained below, the rock-mass around an underground opening undergoes

specific stress and strain conditions, which causes failure to occur at much lower

threshold values.

2.2 The Mechanisms of Brittle Failure in Laboratory Tests and Near

Underground Openings

In laboratory compression tests, crack growth typically starts around 0.3–0.5 rc and

increases until macroscopic failure takes place. Kaiser et al. (2000) and Diederichs

et al. (2004) explain that the conventional models like the Hoek-Brown and the

Mohr-Coulomb strength envelopes assume that both cohesion and friction

contribute to the peak strength and are mobilised instantaneously and simulta-

neously during the test (sliding crack model). For brittle rocks, this interpretation is

valid at high confinement levels, when the rock behaves in a ductile manner.

However, at low confinement, despite the compressive stress field, tensile failure is

generated in the sample due to microscopic rock heterogeneity (Diederichs et al.

2004). As a consequence, crack dilation occurs after the damage initiation stage,

which inhibits the coincidental mobilisation of the cohesion and the frictional

strength component. As an example, Diederichs et al. (2000) demonstrated, through

calculations with a bonded particle model, that, in the case of brittle rocks, the shear

cracks were dominated by a ratio of 50:1 by tensile cracking. Hence, the frictional

strength is only mobilised when the rock is sufficiently damaged to become,

essentially, cohesionless. Failure is driven by a cohesion-loss process and

accelerates when a critical crack density is reached (coalescence). Most importantly,

due to this process, the normal stress is highly variable and the shear strength

component (s = rn tan(u)) distribution is also variable, leading to internal strength

heterogeneity (Kaiser et al. 2000).

In laboratory samples, damage initiation and coalescence happen at distinct stress

levels, respectively around 0.4 and 0.8 rc for granitic or gneissic rock types (where

rc is the uniaxial compressive strength of the intact rock). The coalescence stage

also corresponds to the long-term laboratory strength of the sample.

Around an underground opening, this behaviour is significantly modified (Kaiser

et al. 2000). Instead of a simple monotonic loading path, the rock mass in the field

undergoes a specific stress–strain history, which causes the stress level for crack

coalescence to drop to a much lower value. Typically, in massive and moderately

jointed hard rock masses, brittle failure occurs around 0.3–0.5 rc, i.e. near or

slightly above the stress level required for damage initiation.

Consequently, according to Diederichs et al. (2004), the laboratory level of crack

interaction should be considered as an upper bound for rock strength, while the level

of damage initiation should be regarded as a lower bound. In the field, the obtained

brittle rock-mass strength then depends on various factors, such as rock brittleness

(Hajiabdolmajid et al. 2002, 2003), pre-existing damage, rock-mass heterogeneity

and jointing, feedback confinement due to size effects or stress rotation and more.
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2.3 How to Assess Brittle Rock-Mass Failure in the Field?

To translate these findings into quantitative data, the collaborating researchers

(Martin et al. 1999; Diederichs et al. 2000; Kaiser et al. 2000) propose a bilinear cut-

off of the classical Hoek-Brown failure envelope, as shown in Fig. 3. A first level,

corresponding to the damage initiation envelope, can be described through the so-

called ‘‘Hoek-Brown brittle parameters’’ (Martin et al. 1999):

m ¼ 0 and s � 0:11 , r1 � r3 � rc=3ð Þ
The second threshold, called the ‘‘spalling limit,’’ is defined by r1/r3 = 8–20,

depending mainly on the rock-mass heterogeneity and jointing. When increasing the

confinement level, this line allows a progressive link between the lower bound

corresponding to damage initiation and the classical Hoek-Brown criterion that

becomes valid again when crack opening (and tensile failure) is prevented at higher

confinement (to the right of the spalling limit).

In the case of a tunnel or a mine, Martin (1997), Eberhardt (2001) and Diederichs

et al. (2004) showed that the loading path could be particularly complex, involving

stress increase, decrease and rotation (see stress path in Fig. 3 for example).

Typically, damage initiates in the field near the advancing tunnel face and

progressively increases until macroscopic phenomena occur at about 0.1–0.5 radii

behind the face. The bilinear failure envelope may be crossed at various positions in

the r1 – r3 space, causing different kinds of failure. Spalling phenomena are

encountered when both the damage limit and the spalling limit are exceeded, under

σ1/σc

σ3/σc

Damage threshold 
(m = 0) 

Spalling limit 
(σ1/σ3 = 8 to 20) 

Long term strength 
of lab samples 

Tensile 
failure 

Spalling 
failure 

In situ stress

Shear 
failure 

Possible 
stress path 

Fig. 3 Bilinear cut-off of the classical Hoek-Brown failure envelope and associated failure modes
(modified from Diederichs et al. 2000 and Kaiser et al. 2000)
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the ‘‘long-term lab strength’’ limit (see Fig. 3). In these cases, an important strength

reduction appears.

The bilinear Hoek-Brown failure envelope cut-off can be used to predict the

extent of brittle failure in the field. For example, Martin et al. (1999) showed,

through elastic numerical modelling and comparison with field data, that the

maximum depth of brittle failure around a tunnel in massive to moderately fractured

rock could be well estimated by using a constant deviatoric stress criterion r1 –

r3 & rc/3 (damage initiation level).

Alternatively, for near-circular excavations, Martin et al. (1999) propose that the

depth of failure near the wall can be obtained in a semi-empirical equation,

established from the analysis of various case histories:

df

a
¼ 1:25

rmax

rc

� 0:51 �0:1ð Þ ð1Þ

where:

df Depth of failure

a Tunnel radius

rmax 3r1
0 – r3

0 (from 2D elastic Kirsch solutions), with r1
0 and r3

0 being the major

and minor far-field stresses, respectively

rc Unconfined compressive strength of intact rock

By data interpretation from many tunnels in different rock types from locations

around the world, the collaborating researchers found a good agreement between

field data and the results from both analyses with brittle Hoek-Brown parameters

(Martin et al. 1999) and the semi-empirical equation.

As a complementary analysis, the stress reduction factor (SRF) tables from

Barton’s design chart (1994) might be used to assess the expected intensity of

failure (Kaiser et al. 2000). As can be seen in Fig. 4, at a stress level of 0.30–0.45,

when the depth of failure is close to zero according to Eq. 1, the SRF is near unity.

No failure and, thus, no rock bulking are to be expected. At intermediate SRF values

(5–50) or a stress level of 0.45–0.65 (df = 0–0.3 tunnel radius), modest spalling

may appear. After this threshold, violent failure in the form of strainbursts is to be

anticipated in hard and brittle rocks.

The application of these various failure approaches to the case of the Lötschberg

tunnel are discussed in the rest of this paper. As in-situ far-field stresses and intact

rock uniaxial compressive strengths are the main parameters of the presented

models, the following section is centred on how these parameters were obtained in

our analysis.

3 Evaluation of Stresses and Rock Properties in the Steg Lateral Adit

3.1 In-situ Stress Field Assessment

For the assessment of tunnel stability, the in-situ stress magnitude and orientation

constitutes a first dominant parameter set. However, despite the importance of these
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data in any rock-mechanics problem, few reliable stress measurements are usually

available. In the case of the Lötschberg base tunnel, Steg lateral adit, the stresses

had to be inferred from 3D stress analyses, assuming elastic rock behaviour,

ignoring the influence of tectonic stresses and of heterogeneity of the rock mass.

This approach was conducted by the design office IGWS (1995) during the project

studies. An example of the topographic model and of the results along the Steg

lateral adit are presented in Fig. 5. In 1995, these calculation results were compared

with stress measurements under the Gasteretal Valley, revealing good agreement.

However, it must be emphasised that no comparison had been performed in the

south part of the tunnel (along the Steg track in particular).

From these 3D topographic analyses, it was found that, after TM 1000 along the

Steg track, the principal stresses plotted in Fig. 5 could be considered as reasonably

well aligned with the tunnel main direction X–Y–Z. Consequently, the following

notations were used in the study:

rZ
0 Principal far-field stress, parallel to the vertical (major)

rX
0 Principal far-field stress, parallel to the tunnel axis

rY
0 Principal far-field stress, perpendicular to rX

0 and rY
0

The principal stress values inferred from the IGWS topographic calculations in

the plane Y–Z along the Steg track axis are summarised in Fig. 6. They allowed the

evaluation of the maximum tangential stress around the circular opening

(rhmax = 3rZ
0 – rY

0 ), which is used subsequently in depth-of-failure predictions.

It is important to emphasise the limitations of this approach. In particular, it is

widely recognised today that in-situ stress predictions based on elastic models
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Fig. 4 Relationship between depth of failure, stress level and Barton’s stress reduction factor (SRF)
(taken from Kaiser et al. 2000)
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considering only topography can be very inaccurate, since tectonic effects,

adjustments along weak fault zones, stress concentrations in rocks of high stiffness

etc. are ignored. To clarify this point, a flat-jack test was performed at TM 3700,

which yielded a longitudinal far-field stress of rX
0 = 15 MPa, instead of 9 MPa
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Fig. 5 Three-dimensional topographic model and principal far-field stress values from the design office
IngenieurGemeinschaft WestSchweiz (IGWS) (1995) (note: the dip after the initial peak is due to a side
valley effect)
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predicted by the topographic model. Even if other factors have to be considered, this

observation may be related with a possible tectonic stress, as the base tunnel

remains very near from the valley level; in particular, the world-stress map (Müller

et al. 2004) clearly suggests that the major horizontal stress could be aligned with

the Lötschberg base tunnel axis (SSW to NNE). The axial stress, however, has little

influence on wall spalling, as long as it is significantly lower than 0.3 UCS (see

further). Moreover, a simple elastic calculation would show that a longitudinal far-

field stress of 9 MPa at TM 3700, combined with rZ
0 = 38 MPa and rY

0 = 13 MPa,

would mean tensile longitudinal stress in the tunnel roof and floor after excavation.

Since no opened cracks were observed in the tunnel, the measured value of 15 MPa

may seem more realistic. As no other results were available, a parametric study on

the rX
0 value was performed (see Sect. 4).

3.2 Uniaxial Compressive Strength Assessment

For the assessment of tunnel stability, the unconfined compressive strength of the

intact rock as determined in the laboratory constitutes a second controlling

parameter according to the Canadian models.

In this research project, a detailed analysis of the test results was necessary in

order to account for sample disturbance. Indeed, when sampling rock that may be

prone to brittle failure, long before disking is observed in the core, the effect of

stress concentrations at the end of the borehole causes sample damage (Martin and

Stimpson 1994). When sampling within a metre or two of a highly stressed tunnel

wall, this effect may be aggravated by the incipient spalling of the tunnel wall.

Hence, it is possible (Kaiser 2002) that some samples taken from the Lötschberg

base tunnel are damaged and, thus, may not be representative of the intact rock

properties.

This effect was observed in a series of laboratory tests with acoustic emission

monitoring that were performed by the EPFL research team on granite samples from

station 3900 in the tunnel. Both the uniaxial compressive strength and the damage

initiation level were found to vary with the distance from the tunnel wall. In

particular, on the samples taken at a great distance from the tunnel wall, crack

initiation occurred around 0.4 UCS, indicating no or little pre-existing damage. On

the other hand, at shallower depths, the UCS was much lower and a Kaiser effect

was observed, with a damage initiation level detected later during the test, at 0.7–0.9

UCS. However, no quantitative correlation between depth and damage could be

inferred from these test results. In fact, several other factors should have been

considered, such as the natural dispersion of test results, coring effects, orientation

of foliation, variations in rock granulometry and the brittleness index (Ha-

jiabdolmajid et al. 2002).

Consequently, a statistical analysis was performed on the 84 UCS values

available for this study, in order to determine the most probable ‘‘intact strength’’ of

the rock formations encountered along the Steg lateral adit. After removing the

lowest UCS values for the above-explained reasons, the classification presented in

Table 1 was obtained.
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This table clearly shows that, in gneiss and granodiorite formations, the

orientation of foliation with respect to the main load direction may play a significant

role in the analysis of rock mechanical behaviour. However, since foliation in large

parts is subvertical and dipping generally in the direction of the tunnel, the average

or UCS perpendicular to foliation may be the most representative (the UCS parallel

to foliation is meaningful for the analysis of the tunnel face). Furthermore, the

standard deviations in Table 1 indicate that a significant variability in UCS values

may be expected along the tunnel. Then, as in the context of this research, only the

average values have been used (column ‘‘All values together’’); the natural

dispersion of rock strength will have to be considered when comparing theoretical

analyses and field observations.

4 Analysis of Wall Stability

Rock behaviour at the tunnel walls can now be analysed with the models presented

in Sect. 2 and using the parameters from Sect. 3.

4.1 Application of the Semi-Empirical Failure Criterion

As mentioned before, for a circular excavation, the depth of failure can be obtained

by using the semi-empirical criterion in Eq. 1. Exploiting the stress data from the

IGWS (1995) presented in Fig. 5, an evaluation of the depth of failure along the

tunnel has been performed. Furthermore, the systematic inventory in the field of the

failure zones, with a rough estimate of their depth, along the first 4,000 m from the

Steg portal allowed a comparison between the calculated and measured depths of

failure. The corresponding results are plotted in Figs. 6 and 7.

For the four rock types identified in Sect. 3.2, Fig. 6 shows what the predicted

depth of failure would be if the Steg track was consistently crossing the four rock

types. Logically, in rocks with lower UCS values (Gneiss 625–1610 for example),

failure begins earlier and goes deeper than in rocks with higher UCS values.

However, this analysis only makes sense when it is combined with the observed

geology and compared with the real failed zones, as plotted in Fig. 7. It must be

emphasised that, for a tunnel radius of 5 m, the uncertainty on the semi-empirical

failure criterion leads to a variation of ±35 cm on the predicted depth of failure

Table 1 Values of the uniaxial compressive strength for the four main rock types encountered along the

Steg track

Rock type UCS parallel to

foliation (MPa)

UCS perpendicular

to foliation (MPa)

All values

together (MPa)

Standard

deviation (MPa)

Gneiss TM 625–1610 90 100 95 15

Gneiss TM 2080–2170 130 170 150 28

Granodiorite 110 180 140 35

Granite 200 200 200 25
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(with about a 90% uncertainty). Furthermore, the anticipated variability in in-situ

stress (Martin et al. 2003) and, most importantly, the variability in rock strength

(UCS), increases the uncertainty in the prediction (Kaiser 2006). For example, for a

mean UCS of 200 MPa (granite) at the deepest point in the tunnel (at

rmax = 105 MPa), the depth of failure ranges, according to Eq. 1, from 0.37 to

1.20 m (with a mean of 0.73 m) for a standard deviation of 25 MPa in UCS, as

encountered in this testing programme, and with a 68% uncertainty (±1 standard

deviations if it has a normal distribution).

As a consequence, considering the values plotted in Figs. 6 and 7 (often

\50 cm), the comparison should base on the location of the observed failure and

the relative severity of failure. Furthermore, this depth of failure was sometimes

difficult to assess in the field, as shotcrete had been applied in the most damaged

zones, in particular, between TM 3500 and 4000, where the horizontal line in Fig. 7

indicates an estimated mean value.

In general, good agreement is found between the observed and predicted failure

zones, even though the implied direct relationship with the four rock types may be

overly simplistic, as the expected local variations in rock properties (see Sect. 3.2)

are clearly dominating brittle failure (Martin et al. 2003). In particular, the following

observations can be made:

– Failure in granite is predicted to begin around TM 2700, which is precisely the

case.

– In gneiss and granodiorite, most observed failure zones are predicted by the

semi-empirical failure criterion. However, the damages observed between TM

800 and 1100 are not explained with this approach. These failed zones most

probably correspond to particular local conditions (major principal stress

inclined to the vertical, specific rock mass properties and/or discontinuity
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orientation), which tends to be supported by the fact that failure was mostly non-

symmetric (one-sided) in this area.

This analysis seems to confirm that most of the wall failures observed along the

Steg track can be described by classical spalling processes. Consequently, the

microscopic behaviour of the encountered rocks is expected to fit well with the

brittle failure mechanisms presented in Sect. 2: tensile cracks accumulate until the

rock mass spalls, when the cracks have reached a sufficiently high density such that

coalescence can create near-surface parallel slabs (Kaiser et al. 2000). According to

Martin et al. (1999), this process can be approximated well by numerical models

using brittle Hoek-Brown parameters.

4.2 Use of the Brittle Hoek-Brown Parameters

The analysis was performed with the 3D finite element software Z_Soil (2002). The

model shown in Fig. 8 was composed of more than 4,000 hexahedral continuum

elements; the boundary conditions were modelled by ‘‘infinite elements’’ (i.e. elastic

‘‘springs’’ at the boundary of the tunnel), allowing a smaller 3D model, reduced

calculation time and limited boundary effects. The far-field stress conditions were

taken from the IGWS (1995), as explained in Sect. 3.1. The methodology proposed

by Martin et al. (1999) was used, i.e. elastic analyses with plotting of the brittle

Hoek-Brown criterion m = 0, s = 0.11, to determine the anticipated depth of

failure.

Infinite elements

Applied 
loads 

Boundary conditions

Fig. 8 The 3D finite element model used for this research (note: the short lines for boundary conditions
indicate the direction of zero displacement)
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4.2.1 Calculations for TM 3700 and Influence of the Stress Assumption

As the flat-jack test (see Sect. 3.1) had been performed at TM 3700, not very far

from a failure zone, the first numerical calculations used the corresponding stress

conditions in order to:

– Compare field observations, the semi-empirical failure criterion and Z_Soil

calculations with brittle Hoek-Brown parameters

– Assess the influence of the longitudinal stress value rX
0 on the predictions of

wall stability

The first calculation used the far-field stresses predicted by the IGWS (1995), i.e.

rZ
0 = 38 MPa, rY

0 = 13 MPa and rX
0 = 9 MPa. The rock type is granite, with

UCS = 200 MPa (see Table 2). The results are presented in Fig. 9 for a tunnel

section far behind the face. The isovalues represent the deviator r1 – r3, given in

MPa. Referring to the brittle Hoek-Brown parameters, failure may be observed

when r1 – r3 [ 0.33 UCS, i.e. in this case r1 – r3 [ 66 MPa. The maximum depth

of failure is predicted in the walls with a value of 0.67 m. This value is in good

agreement with the observed failure (around 0.6 m) and with the failure predicted in

Sect. 4.1 (0.58 m with the semi-empirical criterion). The predicted lateral extent of

the notch also appears to be in good agreement with the field observations.

To assess the influence of a possible tectonic stress parallel to the tunnel axis, a

second simulation was carried out with the longitudinal far-field stress value

rX
0 = 15 MPa, as obtained by the flat-jack test. The depth of failure and lateral

extent of the notch are almost the same as in Fig. 9. As for the depth of failure itself,

a value of 0.64 m (instead of 0.67 m) is predicted with rX
0 = 15 MPa. This very

small difference shows that the uncertainty on the rX
0 value does not affect the

stability prediction of the tunnel walls, as it is primarily driven by maximum

tangential stress. Consequently, other simulations of wall behaviour were simply

performed with the far-field stress values from the IGWS (1995).

4.2.2 Additional Analyses

In order to evaluate the quality of depth-of-failure assessment with rock types other

than granite, further simulations were run with the predicted stress conditions at

different locations, as detailed in Table 2.

The corresponding results listed in Table 3 clearly show a good agreement

between the depths of failure predicted with elastic simulations and brittle Hoek-

Table 2 Data for the Z_soil finite element model calculations at various locations along the Steg track

(far-field stresses from the IGWS (1995))

Tunnel meter Rock type UCS (MPa) UCS/3 (MPa) rZ
0 (MPa) rY

0 (MPa) rX
0 (MPa)

TM 1200 Gneiss 95 32 13 7 13

TM 1610 Gneiss 95 32 18 8 12

TM 2500 Granodiorite 140 46 28 10 10
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Brown criteria, or the semi-empirical criterion. As shown in Sect. 4.1, these results

are also in good agreement with observed failures in the tunnel.

4.3 Concluding Remarks about Wall Failure

The good quality of the results obtained in Sects. 4.1 and 4.2 for tunnel walls shows

that the observed phenomena at the Lötschberg base tunnel are correctly depicted

with spalling mechanisms. The two methods tested (semi-empirical criterion and

brittle Hoek-Brown parameters with elastic Z_Soil finite element calculations) to

assess the depth of failure provide quite similar results, and these results fit well

0.67 m 

Line σ1 – σ3 = 66 MPa 
(damage limit) 

Fig. 9 Plot of r1 – r3 (in MPa) for a tunnel section far behind the face, under far-field stresses:
rZ

0 = 38 MPa, rY
0 = 13 MPa and rX

0 = 9 MPa, at TM 3700 (granite)

Table 3 Comparison between predicted depths of failure (DoF) along the Steg track with two different

failure criteria

Tunnel meter Rock type DoF with the semi-empirical

criterion (m)

DoF with the brittle Hoek-Brown parameters

(elastic Z_Soil calculations) (m)

TM 1200 Gneiss 0 0

TM 1610 Gneiss 0.41 0.49

TM 2500 Granodiorite 0.73 0.66

TM 3700 Granite 0.58 0.67
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with the observed conditions. This demonstrates that the approaches developed from

the experiments at the Canadian URL and experiences from tunnels around the

world (see Sect. 2) seem to apply correctly to the brittle rocks encountered in the

Lötschberg base tunnel. Consequently, such analyses would be of great interest for

actual and future tunnel projects in brittle rocks; they should allow a reliable

prediction of the spalling and strain-bursting potential and severity that may be

encountered during the tunnelling process.

However, it must be emphasised that these evaluation methods are only

applicable for massive to moderately jointed rock masses. In case of a high fracture

degree, the rock mass may show a more plastic behaviour as more deformation is

permitted. Failure may then be assessed with classical yield criteria. At the

Lötschberg base tunnel, this remark was confirmed by the observation of some

disturbed zones in highly fractured areas (decimetric average joint spacing) during

the extensive review of wall damage performed for this research.

5 Growth of Failure Along the Tunnel and Indications for Support Systems

As a complementary analysis, 3D calculations of the deviatoric stress contours r1 –

r3 have also been conducted in order to highlight the mechanisms of damage

initiation and failure growth along the tunnel wall.

It must be noted beforehand that the finite element simulations presented

hereafter are overly simplistic to analyse face stability. Indeed, they ignore the

mechanics of spalling (cohesion loss favouring fracture extension that are reflected

in a spalling limit) that play a significant role at the face due to the 3D nature of the

stress conditions. In particular, Kaiser (2005, 2006) showed with non-elastic models

using brittle parameters that, contrary to the limited zone of failure that could be

inferred from Fig. 10, for instance, spalling at the face may occur at the Lötschberg

base tunnel at stresses less than those required to cause failure at the walls.

Figure 10 presents the results of an elastic analysis of the stress conditions near

the tunnel face, showing that some damage is initiated at the border of the face

because of stress concentrations due to the corner effect (r1 – r3 exceeds the

damage limit UCS/3 & 66 MPa). This first damage mechanism is especially

observed near the roof and floor of the tunnel. However, it does not necessarily lead

to spalling behind the face because of the fast decrease in stresses that occurs in the

first few metres of excavation. As a consequence, the rock in the roof and floor of

the tunnel may be damaged (‘‘crack initiation’’, i.e. micro-cracks) but not failed (no

coalescence).

On the walls, the scenario is different. The simulations do not show any failure

initiation at the face corner (r1 – r3 \ UCS/3). Nevertheless, some high stresses

exist in this zone due to corner effects and rock may be damaged anyway in a very

shallow area. After this potential initiation at the face border, failure is not

encountered until the tangential stress reaches sufficiently high values in the walls

such that r1 – r3 exceeds UCS/3. As shown in Fig. 10, representing typically

unfavourable spalling conditions for the tunnel walls at the Lötschberg base tunnel,

this latter condition is reached in the walls within the first metre behind the face (this
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limit tends to move away from the face when more favourable stress conditions are

encountered). After this spalling-initiation limit, the depth of failure increases

progressively until it reaches, at about one tunnel diameter behind the face, the

maximum value that corresponds to the depth of failure given in Sect. 4.

This description of stress conditions near the face and from the face to the walls

is in good agreement with the simulations from Eberhardt (2001) in a lithostatic

case. Eberhardt also highlighted the phenomenon of stress rotation near the face,

provoking increased stress-induced brittle fracture damage.

More generally, these observations back the propositions by Kaiser et al. (2000);

rock support to control brittle damage, such as fully grouted rebar, should be added

within the first few metres behind the face to prevent the bulking phenomenon

related to brittle rock failure. A complementary yielding support system should be

added then, when violent failure, i.e. strainbursting, is encountered. The support

requirements may then be assessed in a two-step process:

– First step: based on the recommendations from Kaiser et al. (2000), evaluate the

support characteristics that should ensure deformation compatibility of support

and ground. The main idea of this step is that the stress reduction factor (Barton

1994) provides an indirect means to account for bulking. A stability chart can

then be used to evaluate support requirements.

– Second step: considering the case when a strain-burst occurs, identify

appropriate support to deal with rock ejection.

In the authors’ opinion, such considerations should be taken into account at the

level of both project studies and TBM conception for tunnels excavated within a

burst-prone environment.

Fig. 10 Plot of r1 – r3 (in MPa) around the face, under far-field stresses: rZ
0 = 38 MPa, rY

0 = 13 MPa
and rX

0 = 15 MPa, at TM 3700 (granite)
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6 Conclusion

In this research, the hard rock failures observed in the Lötschberg base tunnel

along the Steg lateral adit have been analysed. In particular, the developments

from Canadian experience (AECL Underground Research Laboratory [URL]) in

the theory of brittle failure, including a semi-empirical failure criterion and

brittle Hoek-Brown parameters, have been used and compared with field

observations.

At the tunnel walls, the notch formation process is well explained by spalling

mechanisms: the depth-of-failure predictions with both the semi-empirical failure

criterion and the so-called ‘‘brittle Hoek-Brown’’ model are in good agreement with

the observed phenomena. The variability in overbreak can be attributed to several

factors, including variability in rock strength (UCS) and/or brittleness of the

encountered rock formations, fracture density, in-situ stresses etc. When the depth

of failure is determined with mean values, there is, by definition, a 50:50 chance

that, in reality, less (or more) failure is encountered. This is reflected by the fact that

no failure is sometimes encountered between areas showing distress.

Several difficulties were encountered when applying these methods from the

Canadian URL experiment to the Lötschberg base tunnels. One of the limits lies in

the quality of the UCS estimations. In particular, the UCS values have to be

evaluated on intact rock specimens, i.e. without pre-existing damage generated by

the tunnel excavation and/or coring processes. This condition may lead to a more

systematic use of damage detection methods, such as acoustic monitoring in

laboratory tests. Concerning the brittle Hoek-Brown parameters, rock characterisa-

tion could also be deepened in order to take into account factors such as rock

brittleness (Hajiabdolmajid et al. 2002) in the evaluation of the damage threshold.

The necessity for reliable in-situ stress measurements constitutes an additional

difficulty. The evaluations from 3D topographic models may, indeed, be insuffi-

cient, as the presence of large faults, the heterogeneity of the rigidity of the rock

formations or the existence of tectonic stresses can play an important role in the

resulting rock mass behaviour.

Near the face, the 3D calculations performed in this paper helped to highlight the

kinematics of brittle failure growth along the tunnel walls. They also confirmed the

limitations of simple elastic analysis that are usually sufficient to evaluate wall

spalling, in order to assess face stability.

More generally, the results presented provide further support for the Canadian

approach of brittle failure analysis, and stress a list of important parameters for deep

tunnels in a burst-prone environment. They highlight the interest to perform such

studies in the early stages of project conception in order to allow the selection of

adapted excavation techniques and support systems.
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