161 research outputs found

    Fluctuations in the Cosmic Microwave Background I: Form Factors and their Calculation in Synchronous Gauge

    Get PDF
    It is shown that the fluctuation in the temperature of the cosmic microwave background in any direction may be evaluated as an integral involving scalar and dipole form factors, which incorporate all relevant information about acoustic oscillations before the time of last scattering. A companion paper gives asymptotic expressions for the multipole coefficient CC_\ell in terms of these form factors. Explicit expressions are given here for the form factors in a simplified hydrodynamic model for the evolution of perturbations.Comment: 35 pages, no figures. Improved treatment of damping, including both Landau and Silk damping; inclusion of late-time effects; several references added; minor changes and corrections made. Accepted for publication in Phys. Rev. D1

    The HERMES Dual-Radiator Ring Imaging Cerenkov Detector

    Full text link
    The construction and use of a dual radiator Ring Imaging Cerenkov(RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasizes measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.Comment: 25 pages, 23 figure

    Reionization by active sources and its effects on the cosmic microwave background

    Get PDF
    We investigate the possible effects of reionization by active sources on the cosmic microwave background. We concentrate on the sources themselves as the origin of reionization, rather than early object formation, introducing an extra period of heating motivated by the active character of the perturbations. Using reasonable parameters, this leads to four possibilities depending on the time and duration of the energy input: delayed last scattering, double last scattering, shifted last scattering and total reionization. We show that these possibilities are only very weakly constrained by the limits on spectral distortions from the COBE FIRAS measurements. We illustrate the effects of these reionization possibilities on the angular power spectrum of temperature anisotropies and polarization for simple passive isocurvature models and simple coherent sources, observing the difference between passive and active models. Finally, we comment on the implications of this work for more realistic active sources, such as causal white noise and topological defect models. We show for these models that non-standard ionization histories can shift the peak in the CMB power to larger angular scales.Comment: 21 pages LaTeX with 11 eps figures; replaced with final version accepted for publication in Phys. Rev.

    The Q2Q^2-dependence of the generalised Gerasimov-Drell-Hearn integral for the deuteron, proton and neutron

    Full text link
    The Gerasimov-Drell-Hearn (GDH) sum rule connects the anomalous contribution to the magnetic moment of the target nucleus with an energy-weighted integral of the difference of the helicity-dependent photoabsorption cross sections. The data collected by HERMES with a deuterium target are presented together with a re-analysis of previous measurements on the proton. This provides a measurement of the generalised GDH integral covering simultaneously the nucleon-resonance and the deep inelastic scattering regions. The contribution of the nucleon-resonance region is seen to decrease rapidly with increasing Q2Q^2. The DIS contribution is sizeable over the full measured range, even down to the lowest measured Q2Q^2. As expected, at higher Q2Q^2 the data are found to be in agreement with previous measurements of the first moment of g1g_1. From data on the deuteron and proton, the GDH integral for the neutron has been derived and the proton--neutron difference evaluated. This difference is found to satisfy the fundamental Bjorken sum rule at Q2=5Q^2 = 5 GeV2^2.Comment: 12 pages, 10 figure

    Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target

    Full text link
    A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is 0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late

    Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target

    Get PDF
    Single-spin asymmetries in the semi-inclusive production of charged pions in deep-inelastic scattering from transversely and longitudinally polarized proton targets are combined to evaluate the subleading-twist contribution to the longitudinal case. This contribution is significantly positive for (\pi^+) mesons and dominates the asymmetries on a longitudinally polarized target previously measured by \hermes. The subleading-twist contribution for (\pi^-) mesons is found to be small

    Measurement of single-spin azimuthal asymmetries in semi-inclusive electroproduction of pions and kaons on a longitudinally polarised deuterium target

    Get PDF
    Single-spin asymmetries have been measured for semi-inclusive electroproduction of π+\pi^+, π\pi^-, π0\pi^0 and K+K^+ mesons in deep-inelastic scattering off a longitudinally polarised deuterium target. The asymmetries appear in the distribution of the hadrons in the azimuthal angle ϕ\phi around the virtual photon direction, relative to the lepton scattering plane. The corresponding analysing powers in the sinϕ\sin \phi moment of the cross section are 0.012±0.002(stat.)±0.002(syst.)0.012 \pm 0.002 {(stat.)} \pm 0.002 {(syst.)} for π+\pi^+, 0.006±0.003(stat.)±0.002(syst.)0.006 \pm 0.003 {(stat.)} \pm 0.002 {(syst.)} for π\pi^-, 0.021±0.005(stat.)±0.003(syst.)0.021 \pm 0.005 {(stat.)} \pm 0.003 {(syst.)} for π0\pi^0 and 0.013±0.006(stat.)±0.003(syst.)0.013 \pm 0.006 {(stat.)} \pm 0.003 {(syst.)} for K+K^+. The sin2ϕ\sin 2\phi moments are compatible with zero for all particles.Comment: Revised version shortened 9 pages, 3 tables, 7 figure

    Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark- antiquark fluctuations with the nuclear medium.Comment: RevTeX, 5 pages, 3 figure

    Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering

    Get PDF
    Evidence for a positive longitudinal double-spin asymmetry = 0.24 +-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive rho^0(770) vector meson production in polarised lepton-proton scattering was observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA positron beam was scattered off a longitudinally polarised pure hydrogen gas target. The average invariant mass of the photon-proton system has a value of = 4.9 GeV, while the average negative squared four-momentum of the virtual photon is = 1.7 GeV^2. The ratio of the present result to the corresponding spin asymmetry in inclusive deep-inelastic scattering is in agreement with an early theoretical prediction based on the generalised vector meson dominance model.Comment: 10 pages, 4 embedded figures, LaTe

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
    corecore