904 research outputs found

    Constraining the expansion history of the universe from the red shift evolution of cosmic shear

    Full text link
    We present a quantitative analysis of the constraints on the total equation of state parameter that can be obtained from measuring the red shift evolution of the cosmic shear. We compare the constraints that can be obtained from measurements of the spin two angular multipole moments of the cosmic shear to those resulting from the two dimensional and three dimensional power spectra of the cosmic shear. We find that if the multipole moments of the cosmic shear are measured accurately enough for a few red shifts the constraints on the dark energy equation of state parameter improve significantly compared to those that can be obtained from other measurements.Comment: 17 pages, 4 figure

    Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak

    Full text link
    The baryon acoustic oscillations are a promising route to the precision measure of the cosmological distance scale and hence the measurement of the time evolution of dark energy. We show that the non-linear degradation of the acoustic signature in the correlations of low-redshift galaxies is a correctable process. By suitable reconstruction of the linear density field, one can sharpen the acoustic peak in the correlation function or, equivalently, restore the higher harmonics of the oscillations in the power spectrum. With this, one can achieve better measurements of the acoustic scale for a given survey volume. Reconstruction is particularly effective at low redshift, where the non-linearities are worse but where the dark energy density is highest. At z=0.3, we find that one can reduce the sample variance error bar on the acoustic scale by at least a factor of 2 and in principle by nearly a factor of 4. We discuss the significant implications our results have for the design of galaxy surveys aimed at measuring the distance scale through the acoustic peak.Comment: 5 pages, LaTeX. Submitted to the Astrophysical Journa

    Chiral effective theory predictions for deuteron form factor ratios at low Q^2

    Get PDF
    We use chiral effective theory to predict the deuteron form factor ratio G_C/G_Q as well as ratios of deuteron to nucleon form factors. These ratios are calculated to next-to-next-to-leading order. At this order the chiral expansion for the NN isoscalar charge operator (including consistently calculated 1/M corrections) is a parameter-free prediction of the effective theory. Use of this operator in conjunction with NLO and NNLO chiral effective theory wave functions produces results that are consistent with extant experimental data for Q^2 < 0.35 GeV^2. These wave functions predict a deuteron quadrupole moment G_Q(Q^2=0)=0.278-0.282 fm^2-with the variation arising from short-distance contributions to this quantity. The variation is of the same size as the discrepancy between the theoretical result and the experimental value. This motivates the renormalization of G_Q via a two-nucleon operator that couples to quadrupole photons. After that renormalization we obtain a robust prediction for the shape of G_C/G_Q at Q^2 < 0.3 GeV^2. This allows us to make precise, model-independent predictions for the values of this ratio that will be measured at the lower end of the kinematic range explored at BLAST. We also present results for the ratio G_C/G_M.Comment: 31 pages, 7 figure

    Photo-z optimization for measurements of the BAO radial direction

    Get PDF
    Baryon Acoustic Oscillations (BAO) in the radial direction offer a method to directly measure the Universe expansion history, and to set limits to space curvature when combined to the angular BAO signal. In addition to spectroscopic surveys, radial BAO might be measured from accurate enough photometric redshifts obtained with narrow-band filters. We explore the requirements for a photometric survey using Luminous Red Galaxies (LRG) to competitively measure the radial BAO signal and discuss the possible systematic errors of this approach. If LRG were a highly homogeneous population, we show that the photo-z accuracy would not substantially improve by increasing the number of filters beyond ∌10\sim 10, except for a small fraction of the sources detected at high signal-to-noise, and broad-band filters would suffice to achieve the target σz=0.003(1+z)\sigma_z = 0.003 (1+z) for measuring radial BAO. Using the LRG spectra obtained from SDSS, we find that the spectral variability of LRG substantially worsens the achievable photometric redshift errors, and that the optimal system consists of ∌\sim 30 filters of width Δλ/λ∌0.02\Delta \lambda / \lambda \sim 0.02. A S/N>20S/N > 20 is generally necessary at the filters on the red side of the HαH\alpha break to reach the target photometric accuracy. We estimate that a 5-year survey in a dedicated telescope with etendue in excess of 60 m2deg2{\rm m}^2 {\rm deg}^2 would be necessary to obtain a high enough density of galaxies to measure radial BAO with sufficiently low shot noise up to z=0.85z= 0.85. We conclude that spectroscopic surveys have a superior performance than photometric ones for measuring BAO in the radial direction.Comment: Replaced with minor editorial comments and one extra figure. Results unchange

    Continuously-variable survival exponent for random walks with movable partial reflectors

    Full text link
    We study a one-dimensional lattice random walk with an absorbing boundary at the origin and a movable partial reflector. On encountering the reflector, at site x, the walker is reflected (with probability r) to x-1 and the reflector is simultaneously pushed to x+1. Iteration of the transition matrix, and asymptotic analysis of the probability generating function show that the critical exponent delta governing the survival probability varies continuously between 1/2 and 1 as r varies between 0 and 1. Our study suggests a mechanism for nonuniversal kinetic critical behavior, observed in models with an infinite number of absorbing configurations.Comment: 5 pages, 3 figure

    Dynamic Resting-State Functional Connectivity in Major Depression

    Get PDF
    Major depressive disorder (MDD) is characterized by abnormal resting-state functional connectivity (RSFC), especially in medial prefrontal cortical (MPFC) regions of the default network. However, prior research in MDD has not examined dynamic changes in functional connectivity as networks form, interact, and dissolve over time. We compared unmedicated individuals with MDD (n=100) to control participants (n=109) on dynamic RSFC (operationalized as SD in RSFC over a series of sliding windows) of an MPFC seed region during a resting-state functional magnetic resonance imaging scan. Among participants with MDD, we also investigated the relationship between symptom severity and RSFC. Secondary analyses probed the association between dynamic RSFC and rumination. Results showed that individuals with MDD were characterized by decreased dynamic (less variable) RSFC between MPFC and regions of parahippocampal gyrus within the default network, a pattern related to sustained positive connectivity between these regions across sliding windows. In contrast, the MDD group exhibited increased dynamic (more variable) RSFC between MPFC and regions of insula, and higher severity of depression was related to increased dynamic RSFC between MPFC and dorsolateral prefrontal cortex. These patterns of highly variable RSFC were related to greater frequency of strong positive and negative correlations in activity across sliding windows. Secondary analyses indicated that increased dynamic RSFC between MPFC and insula was related to higher levels of recent rumination. These findings provide initial evidence that depression, and ruminative thinking in depression, are related to abnormal patterns of fluctuating communication among brain systems involved in regulating attention and self-referential thinking
    • 

    corecore