70 research outputs found

    Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission

    Full text link
    High-TcT_c cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antinodal quasiparticle excitations appear only below TcT_c, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to TcT_c. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic

    Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates

    Get PDF
    In strongly-correlated systems the electronic properties at the Fermi energy (EF) are intertwined with those at high energy scales. One of the pivotal challenges in the field of high-temperature superconductivity (HTSC) is to understand whether and how the high energy scale physics associated with Mott-like excitations (|E-EF|>1 eV) is involved in the condensate formation. Here we show the interplay between the many-body high-energy CuO2 excitations at 1.5 and 2 eV and the onset of HTSC. This is revealed by a novel optical pump supercontinuum-probe technique, which provides access to the dynamics of the dielectric function in Y-Bi2212 over an extended energy range, after the photoinduced suppression of the superconducting pairing. These results unveil an unconventional mechanism at the base of HTSC both below and above the optimal hole concentration required to attain the maximum critical temperature (Tc)

    Increased impedance near cut-off in plasma-like media leading to emission of high-power, narrow-bandwidth radiation

    Get PDF
    Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.ope

    Extraordinary carrier multiplication gated by a picosecond electric field pulse

    Get PDF
    The study of carrier multiplication has become an essential part of many-body physics and materials science as this multiplication directly affects nonlinear transport phenomena, and has a key role in designing efficient solar cells and electroluminescent emitters and highly sensitive photon detectors. Here we show that a 1-MVcm−1 electric field of a terahertz pulse, unlike a DC bias, can generate a substantial number of electron–hole pairs, forming excitons that emit near-infrared luminescence. The bright luminescence associated with carrier multiplication suggests that carriers coherently driven by a strong electric field can efficiently gain enough kinetic energy to induce a series of impact ionizations that can increase the number of carriers by about three orders of magnitude on the picosecond time scale

    Neuroinflammation and psychiatric illness

    Get PDF

    Femtosecond mid-infrared study of the high-Tc superconductor YBa2Cu3O7-∂

    No full text

    Femtosecond mid-infrared spectroscopy of nonequilibrium excitations in YBa2Cu3O7-δ

    No full text
    We report on the first time-resolved experiment on high-temperature superconductors probing the ultrafast nonlinear (ab)-plane reflectivity in the mid-infrared spectral range (10 to 20 μm)

    Femtosecond mid-infrared study of YBa2Cu3O7-δ

    No full text
    Femtosecond near-infrared excitation of optimally-doped and underdoped YBa2Cu3O7-δ leads to an ultrafast fill-in of the much-discussed (ab)-plane mid-infrared conductivity gap. Transients taken from the underdoped material reveal two gap constituents with distinctly different recovery dynamics and saturation behaviour
    corecore