1,401 research outputs found

    Assessing the potential to use serious gaming in planning processes for sanitation designed for resource recovery

    Get PDF
    There is an urgent need for innovations in the sanitation sector to minimize environmental impacts and maximize resource recovery. Uptake of innovations may require changes in established technical practices, organisational norms and/or individual behaviours. Achieving change in any of these areas requires influencing cognitive, normative and relational learning processes. Serious games have been identified a potential tool for planners and environmental managers to influence such learning processes. This study designed the serious game RECLAIM to share knowledge about resource recovery from sanitation and to support attitude-change and collaboration between players. A structured framework was applied to assess if the game: 1) increased understanding of resource recovery (cognitive learning), 2) changed worldviews (normative learning), 3) led to more collaboration (relational learning), and 4) was a positive experience. Proof-of-concept testing of the game in Uganda found that it was positively received. The game provided cognitive learning on environmental and health impacts, resource recovery, and sanitation in general. Players gained an appreciation of the need for collaboration and it was deemed to have the potential to influence worldviews of a larger stakeholder group. Future recommendations include embedding the game in planning processes, including several gaming sessions that would strengthen cognition learning and the potential for changing practices

    Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria

    Get PDF
    BACKGROUND: The development and outcome of cerebral malaria (CM) reflects a complex interplay between parasite-expressed virulence factors and host response to infection. The murine CM model, Plasmodium berghei ANKA (PbA), which simulates many of the features of human CM, provides an excellent system to study this host/parasite interface. We designed "combination" microarrays that concurrently detect genome-wide transcripts of both PbA and mouse, and examined parasite and host transcriptional programs during infection of CM-susceptible (C57BL/6) and CM-resistant (BALB/c) mice. RESULTS: Analysis of expression data from brain, lung, liver, and spleen of PbA infected mice showed that both host and parasite gene expression can be examined using a single microarray, and parasite transcripts can be detected within whole organs at a time when peripheral blood parasitemia is low. Parasites display a unique transcriptional signature in each tissue, and lung appears to be a large reservoir for metabolically active parasites. In comparisons of susceptible versus resistant animals, both host and parasite display distinct, organ-specific transcriptional profiles. Differentially expressed mouse genes were related to humoral immune response, complement activation, or cell-cell interactions. PbA displayed differential expression of genes related to biosynthetic activities. CONCLUSION: These data show that host and parasite gene expression profiles can be simultaneously analysed using a single "combination" microarray, and that both the mouse and malaria parasite display distinct tissue- and strain-specific responses during infection. This technology facilitates the dissection of host-pathogen interactions in experimental cerebral malaria and could be extended to other disease models

    Host Biomarkers Are Associated With Response to Therapy and Long-Term Mortality in Pediatric Severe Malaria.

    Get PDF
    Background. Host responses to infection are critical determinants of disease severity and clinical outcome. The development of tools to risk stratify children with malaria is needed to identify children most likely to benefit from targeted interventions.Methods. This study investigated the kinetics of candidate biomarkers of mortality associated with endothelial activation and dysfunction (angiopoietin-2 [Ang-2], soluble FMS-like tyrosine kinase-1 [sFlt-1], and soluble intercellular adhesion molecule-1 [sICAM-1]) and inflammation (10 kDa interferon γ-induced protein [CXCL10/IP-10] and soluble triggering receptor expressed on myeloid cells-1 [sTREM-1]) in the context of a randomized, double-blind, placebo-controlled, parallel-arm trial evaluating inhaled nitric oxide versus placebo as adjunctive therapy to parenteral artesunate for severe malaria. One hundred eighty children aged 1–10 years were enrolled at Jinja Regional Referral Hospital in Uganda and followed for up to 6 months.Results. There were no differences between the 2 study arms in the rate of biomarker recovery. Median levels of Ang-2, CXCL10, and sFlt-1 were higher at admission in children who died in-hospital (n = 15 of 180; P < .001, P = .027, and P = .004, respectively). Elevated levels of Ang-2, sTREM-1, CXCL10, and sICAM-1 were associated with prolonged clinical recovery times in survivors. The Ang-2 levels were also associated with postdischarge mortality (P < .0001). No biomarkers were associated with neurodisability.Conclusions. Persistent endothelial activation and dysfunction predict survival in children admitted with severe malaria

    Altered angiogenesis as a common mechanism underlying preterm birth, small for gestational age, and stillbirth in women living with HIV

    Get PDF
    Background Angiogenic processes in the placenta are critical regulators of fetal growth and impact birth outcomes, but there are limited data documenting these processes in HIV-infected women or women from low-resource settings. Objective We sought to determine whether angiogenic factors are associated with adverse birth outcomes in HIV-infected pregnant women started on antiretroviral therapy. Study Design This is a secondary analysis of samples collected as part of a clinical trial randomizing pregnant women and adolescents infected with HIV to lopinavir/ritonavir-based (n = 166) or efavirenz-based (n = 160) antiretroviral therapy in Tororo, Uganda. Pregnant women living with HIV were enrolled between 12-28 weeks of gestation. Plasma samples were evaluated for angiogenic biomarkers (angiopoietin-1, angiopoietin-2, vascular endothelial growth factor, soluble fms-like tyrosine kinase-1, placental growth factor, and soluble endoglin) by enzyme-linked immunosorbent assay between: 16-<20, 20-<24, 24-<28, 28-<32, 32-<36, 36-<37 weeks of gestation. The primary outcome was preterm birth. Results In all, 1115 plasma samples from 326 pregnant women and adolescents were evaluated. There were no differences in angiogenic factors according to antiretroviral therapy group (P > .05 for all). The incidence of adverse birth outcomes was 16.9% for spontaneous preterm births, 25.6% for small-for-gestational-age births, and 2.8% for stillbirth. We used linear mixed effect modelling to evaluate longitudinal changes in angiogenic factor concentrations between birth outcome groups adjusting for gestational age at venipuncture, maternal age, body mass index, gravidity, and the interaction between treatment arm and gestational age. Two angiogenic factors–soluble endoglin and placental growth factor–were associated with adverse birth outcomes. Significantly higher concentrations of soluble endoglin throughout gestation were found in study participants destined to deliver preterm [likelihood ratio test, χ2(1) = 12.28, P < .0005] and in those destined to have stillbirths [χ2(1) = 5.67, P < .02]. By contrast, significantly lower concentrations of placental growth factor throughout gestation were found in those destined to have small-for-gestational-age births [χ2(1) = 7.89, P < .005] and in those destined to have stillbirths [χ2(1) = 21.59, P < .0001]. Conclusion An antiangiogenic state in the second or third trimester is associated with adverse birth outcomes, including stillbirth in women and adolescents living with HIV and receiving antiretroviral therapy

    Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations

    Get PDF
    FimH-mediated adhesion of Escherichia coli to bladder epithelium is a prerequisite for urinary tract infections. FimH is also essential for blood-borne bacterial dissemination, but the mechanisms are poorly understood. The purpose of this study was to assess the influence of different FimH mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial adhesion of each mutant across several commonly used adhesion assays, including agglutination of yeast, adhesion to mono- and tri-mannosylated substrates, and static adhesion to bladder epithelial and endothelial cells. We performed a comparison of these assays to a novel method that we developed to study bacterial adhesion to mammalian cells under flow conditions. We showed that E. coli MSC95-FimH adheres more efficiently to microvascular endothelium than to bladder epithelium, and that only endothelium supports adhesion at physiological shear stress. The results confirmed that mannose binding pocket mutations abrogated adhesion. We demonstrated that FimH residues E50 and T53 are crucial for adhesion under flow conditions. The coating of endothelial cells on biochips and modelling of physiological flow conditions enabled us to identify FimH residues crucial for adhesion. These results provide novel insights into screening methods to determine the effect of FimH mutants and potentially FimH antagonists. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10096-016-2820-8) contains supplementary material, which is available to authorized users

    Redefining genomic privacy: trust and empowerment

    Get PDF
    Fulfilling the promise of the genetic revolution requires the analysis of large datasets containing information from thousands to millions of participants. However, sharing human genomic data requires protecting subjects from potential harm. Current models rely on de-identification techniques in which privacy versus data utility becomes a zero-sum game. Instead, we propose the use of trust-enabling techniques to create a solution in which researchers and participants both win. To do so we introduce three principles that facilitate trust in genetic research and outline one possible framework built upon those principles. Our hope is that such trust-centric frameworks provide a sustainable solution that reconciles genetic privacy with data sharing and facilitates genetic research

    Anti-hLAMP2-antibodies and dual positivity for anti-GBM and MPO-ANCA in a patient with relapsing pulmonary-renal syndrome

    Get PDF
    Background Pulmonary-renal syndrome associated with anti-glomerular basement membrane (GBM) antibodies, also known as Goodpasture's syndrome, is a rare but acute and life-threatening condition. One third of patients presenting as anti-GBM antibody positive pulmonary-renal syndrome or rapidly progressive glomerulonephritis are also tested positive for anti-neutrophil cytoplasmic antibodies (ANCA). Whilst anti-GBM disease is considered a non-relapsing condition, the long-term course of double-positive patients is less predictable. Case Presentation We report a patient with such dual positivity, who presented with pulmonary hemorrhage, crescentic glomerulonephritis and membranous nephropathy. Plasmapheresis in combination with immunosuppresive therapy led to a rapid remission but the disease relapsed after two years. The serum of the patient was tested positive for antibodies to human lysosomal membrane protein 2 (hLAMP2), a novel autoantigen in patients with active small-vessel vasculitis (SVV). The anti-hLAMP2 antibody levels correlated positively with clinical disease activity in this patient. Conclusion We hypothesize that this antibody may indicate a clinical course similar to ANCA-associated vasculitis in double-positive patients. However, this needs to be confirmed on comprehensive patient cohorts

    The J-triplet Cooper pairing with magnetic dipolar interactions

    Get PDF
    Recently, cold atomic Fermi gases with the large magnetic dipolar interaction have been laser cooled down to quantum degeneracy. Different from electric-dipoles which are classic vectors, atomic magnetic dipoles are quantum-mechanical matrix operators proportional to the hyperfine-spin of atoms, thus provide rich opportunities to investigate exotic many-body physics. Furthermore, unlike anisotropic electric dipolar gases, unpolarized magnetic dipolar systems are isotropic under simultaneous spin-orbit rotation. These features give rise to a robust mechanism for a novel pairing symmetry: orbital p-wave (L=1) spin triplet (S=1) pairing with total angular momentum of the Cooper pair J=1. This pairing is markedly different from both the 3^3He-B phase in which J=0 and the 3^3He-AA phase in which JJ is not conserved. It is also different from the p-wave pairing in the single-component electric dipolar systems in which the spin degree of freedom is frozen
    • …
    corecore