113 research outputs found

    Surge of Peripheral Arginine Vasopressin in a Rat Model of Birth Asphyxia

    Get PDF
    Mammalian birth is accompanied by a period of obligatory asphyxia, which consists of hypoxia (drop in blood O-2 levels) and hypercapnia (elevation of blood CO2 levels). Prolonged, complicated birth can extend the asphyxic period, leading to a pathophysiological situation, and in humans, to the diagnosis of clinical birth asphyxia, the main cause of hypoxic-ischemic encephalopathy (HIE). The neuroendocrine component of birth asphyxia, in particular the increase in circulating levels of arginine vasopressin (AVP), has been extensively studied in humans. Here we show for the first time that normal rat birth is also accompanied by an AVP surge, and that the fetal AVP surge is further enhanced in a model of birth asphyxia, based on exposing 6-day old rat pups to a gas mixture containing 4% O-2 and 20% CO2 for 45 min. Instead of AVP, which is highly unstable with a short plasma half-life, we measured the levels of copeptin, the C-terminal part of prepro-AVP that is biochemically much more stable. In our animal model, the bulk of AVP/copeptin release occurred at the beginning of asphyxia (mean 7.8 nM after 15 min of asphyxia), but some release was still ongoing even 90 min after the end of the 45 min experimental asphyxia (mean 1.2 nM). Notably, the highest copeptin levels were measured after hypoxia alone (mean 14.1 nM at 45 min), whereas copeptin levels were low during hypercapnia alone (mean 2.7 nM at 45 min), indicating that the hypoxia component of asphyxia is responsible for the increase in AVP/copeptin release. Alternating the O-2 level between 5 and 9% (CO2 at 20%) with 5 min intervals to mimic intermittent asphyxia during prolonged labor resulted in a slower but quantitatively similar rise in copeptin (peak of 8.3 nM at 30 min). Finally, we demonstrate that our rat model satisfies the standard acid-base criteria for birth asphyxia diagnosis, namely a drop in blood pH below 7.0 and the formation of a negative base excess exceeding -11.2 mmol/l. The mechanistic insights from our work validate the use of the present rodent model in preclinical work on birth asphyxia.Peer reviewe

    CNS pharmacology of NKCC1 inhibitors*

    Get PDF
    The Na-K-2Cl cotransporter NKCC1 and the neuron-specific K-Cl cotransporter KCC2 are considered attractive CNS drug targets because altered neuronal chloride regulation and consequent effects on GABAergic signaling have been implicated in numerous CNS disorders. While KCC2 modulators are not yet clinically available, the loop diuretic bumetanide has been used in clinical studies to treat brain disorders and as a tool for NKCC1 inhibition in preclinical models. Bumetanide is known to have anticonvulsant and neuroprotective effects under some pathophysiological conditions. However, as shown in several species from neonates to adults (mice, rats, dogs, and by extrapolation in humans), at the low clinical doses of bumetanide approved for diuresis, this drug has negligible access into the CNS, reaching levels that are much lower than what is needed to inhibit NKCC1 in cells within the brain parenchyma. Several drug discovery strategies have been used over the last ~15 years to develop brain-permeant compounds that, ideally, should be selective for NKCC1 to eliminate the diuresis mediated by inhibition of renal NKCC2. The strategies employed to improve the pharmacokinetic and pharmacodynamic properties of NKCC1 blockers include evaluation of other clinically approved loop diuretics; development of lipophilic prodrugs of bumetanide; development of side-chain derivatives of bumetanide; and unbiased high-throughput screening approaches of drug discovery based on large chemical compound libraries. The main outcomes are that (1), non-acidic loop diuretics such as azosemide and torasemide may have advantages as NKCC1 inhibitors vs. bumetanide; (2), bumetanide prodrugs achieve significantly higher brain levels of the parent drug and have lower diuretic activity; (3), the novel bumetanide side-chain derivatives do not exhibit any functionally relevant improvement of CNS accessibility or NKCC1 selectivity vs. bumetanide; (4) novel compounds discovered by high-throughput screening may resolve some of the inherent problems of bumetanide, but as yet this has not been achieved. Thus, further research is needed to optimize the design of brain-permeant NKCC1 inhibitors. Another major challenge is to identify the mechanisms whereby various NKCC1-expressing cellular targets of these drug within (e.g., neurons, oligodendrocytes or astrocytes) and outside the brain parenchyma (e.g., blood-brain barrier, choroid plexus, endocrine and immune system), as well as molecular off-target effects, might contribute to their reported therapeutic and adverse effects.Peer reviewe

    Bumetanide for neonatal seizures : No light in the pharmacokinetic/dynamic tunnel

    Get PDF
    In his editorial, Kevin Staley criticizes our recent work demonstrating the lack of effect of bumetanide in a novel model of neonatal seizures. The main points in our response are that (1) our work is on an asphyxia model, not one on "hypercarbia only"; (2) clinically relevant parenteral doses of bumetanide applied in vivo lead to concentrations in the brain parenchyma that are at least an order of magnitude lower than what would be sufficient to exert any direct effect-even a transient one-on neuronal functions, including neonatal seizures; and (3) moreover, bumetanide's molecular target in the brain is the Na-K-2Cl cotransporter NKCC1, which has vital functions in neurons, astrocytes, and oligodendrocytes as well as microglia. This would make it impossible even for highly brain-permeant NKCC1 blockers to specifically target depolarizing and excitatory actions of gamma-aminobutyric acid in principal neurons of the brain, which is postulated as the rationale of clinical trials on neonatal seizures.Peer reviewe

    Reply to the commentary by Ben-Ari and Delpire : Bumetanide and neonatal seizures: Fiction versus reality

    Get PDF
    In this response to a commentary by Ben-Ari and Delpire on our recent study on the pharmacology of neonatal seizures in a novel, physiologically validated rat model of birth asphyxia, we wish to rectify their inaccurate descriptions of our model and data. Furthermore, because Ben-Ari and Delpire suggest that negative data on bumetanide from preclinical and clinical trials of neonatal seizures have few implications for (alleged) bumetanide actions on neurons in other brain disorders, we will discuss this topic as well. Based on the poor brain penetration of bumetanide, combined with the extremely wide cellular expression patterns of the target protein NKCC1, it is obvious that the numerous actions of systemically applied bumetanide described in the literature are not mediated by the drug's effects on central neurons.Peer reviewe

    Puhakaiselle

    Get PDF

    Sosiaalisen tietoisuuden evoluutiosta

    Get PDF
    Teema : totuu

    Neurobiologia – Silta fysiikasta psykologiaan

    Get PDF
    Aivojen toiminnan ymmärtämistä pidetään yhtenä aikamme tieteiden suurimmista ja kiinnostavimmista haasteista. Historiasta tiedämme, että sielunelämän ja aivojen salaperäinen yhteys on askarruttanut ihmisiä vuosituhansien ajan tosin johtamatta juurikaan varsinaiseen tiedon kasvuun. Tämä tilanne on aikanamme muuttunut rajusti, ja 1990-luvun lopussa neurotieteet edistyvät hämmästyttävällä vauhdilla: suuri osa tämän päivän kokeellisesta työstä olisi vain joitain vuosia sitten tuntunut tieteiskirjallisuudelta

    Nykybiologian maailmankuva

    Get PDF
    Biologia on tieteenä kehitysvaiheessa, jonka voi rinnastaa sata vuotta sitten tapahtuneeseen vallankumoukseen fysiikassa, jolloin aineen rakenteen periaatteet alkoivat avautua. Ihmisen käsitys ympäröivästä todellisuudesta ja omasta itsestään on muutoksen tilassa. Monet klassiset tieteidenväliset raja-aidat ovat kaatumassa, ja kokeellisen tutkimuksen tulokset esimerkiksi neurobiologian alueella vaikuttavat voimakkaasti sekä teorianmuodostukseen että sovellutuksiin psykologiassa ja psykiatriassa. Modernilla biologialla on kasvavassa määrin kosketuspintoja kulttuurin tutkimukseen ja filosofiaan. Biologisella tiedolla on siten voimakas vaikutus maailmankuvaamme, tapaamme hahmottaa ja jäsentää todellisuutta. Se muokkaa myös maailmankatsomustamme: näkemystämme ihmisyydestä ja "paikastamme" luonnossa – ja tätä kautta se vaikuttaa arvovalintoihimme ja niihin perustuviin tekoihin

    GABA actions and ionic plasticity in epilepsy

    Get PDF
    Concepts of epilepsy, based on a simple change in neuronal excitation/inhibition balance, have subsided in face of recent insights into the large diversity and context-dependence of signaling mechanisms at the molecular, cellular and neuronal network level. GABAergic transmission exerts both seizure-suppressing and seizure-promoting actions. These two roles are prone to short-term and long-term alterations, evident both during epileptogenesis and during individual epileptiform events. The driving force of GABAergic currents is controlled by ion-regulatory molecules such as the neuronal K-Cl cotransporter KCC2 and cytosolic carbonic anhydrases. Accumulating evidence suggests that neuronal ion regulation is highly plastic, thereby contributing to the multiple roles ascribed to GABAergic signaling during epileptogenesis and epilepsy.Peer reviewe
    • …
    corecore