111 research outputs found
Control of VEGF-A transcriptional programs by pausing and genomic compartmentalization.
Vascular endothelial growth factor A (VEGF-A) is a master regulator of angiogenesis, vascular development and function. In this study we investigated the transcriptional regulation of VEGF-A-responsive genes in primary human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using genome-wide global run-on sequencing (GRO-Seq). We demonstrate that half of VEGF-A-regulated gene promoters are characterized by a transcriptionally competent paused RNA polymerase II (Pol II). We show that transition into productive elongation is a major mechanism of gene activation of virtually all VEGF-regulated genes, whereas only âŒ40% of the genes are induced at the level of initiation. In addition, we report a comprehensive chromatin interaction map generated in HUVECs using tethered conformation capture (TCC) and characterize chromatin interactions in relation to transcriptional activity. We demonstrate that sites of active transcription are more likely to engage in chromatin looping and cell type-specific transcriptional activity reflects the boundaries of chromatin interactions. Furthermore, we identify large chromatin compartments with a tendency to be coordinately transcribed upon VEGF-A stimulation. We provide evidence that these compartments are enriched for clusters of regulatory regions such as super-enhancers and for disease-associated single nucleotide polymorphisms (SNPs). Collectively, these findings provide new insights into mechanisms behind VEGF-A-regulated transcriptional programs in endothelial cells
Polycomb Repressive Complex 2 Regulates Genes Necessary for Intestinal Microfold Cell (M Cell) Development
BACKGROUND & AIMS: Microfold cells (M cells) are immunosurveillance epithelial cells located in the Peyer's patches (PPs) in the intestine and are responsible for monitoring and transcytosis of antigens, microorganisms, and pathogens. Mature M cells use the receptor glycoprotein 2 (GP2) to aid in transcytosis. Recent studies have shown transcription factors, Spi-B and SRY-Box Transcription Factor 8 (Sox8). are necessary for M-cell differentiation, but not sufficient. An exhaustive set of factors sufficient for differentiation and development of a mature GP2+ M cell remains elusive. Our aim was to understand the role of polycomb repressive complex 2 (PRC2) as an epigenetic regulator of M-cell development. Estrogen-related-receptor gamma (Esrrg), identified as a PRC2-regulated gene, was studied in depth, in addition to its relationship with Spi-B and Sox8. METHODS: Comparative chromatin immunoprecipitation and global run-on sequencing analysis of mouse intestinal organoids were performed in stem condition, enterocyte conditions, and receptor activator of nuclear factor kappa B ligand-induced M-cell condition. Esrrg, which was identified as one of the PRC2-regulated transcription factors, was studied in wild-type mice and knocked out in intestinal organoids using guide RNA's. Sox8 null mice were used to study Esrrg and its relation to Sox8. RESULTS: chromatin immunoprecipitation and global run-on sequencing analysis showed 12 novel PRC2 regulated transcription factors, PRC2-regulated Esrrg is a novel M-cell-specific transcription factor acting on a receptor activator of nuclear factor kappa B ligand-receptor activator of nuclear factor kappa B-induced nuclear factor-kappa B pathway, upstream of Sox8, and necessary but not sufficient for a mature M-cell marker of Gp2 expression. CONCLUSIONS: PRC2 regulates a significant set of genes in M cells including Esrrg, which is critical for M-cell development and differentiation. Loss of Esrrg led to an immature M-cell phenotype lacking in Sox8 and Gp2 expression. Transcript profiling: the data have been deposited in the NCBI Gene Expression Omnibus database (GSE157629).Peer reviewe
The proapoptotic gene interferon regulatory factor-1 mediates the antiproliferative outcome of paired box 2 gene and tamoxifen
Funder: Norges ForskningsrĂ„d (Research Council of Norway); doi: https://doi.org/10.13039/501100005416Funder: Kreftforeningen (Norwegian Cancer Society); doi: https://doi.org/10.13039/100008730Abstract: Tamoxifen is the most prescribed selective estrogen receptor (ER) modulator in patients with ER-positive breast cancers. Tamoxifen requires the transcription factor paired box 2 protein (PAX2) to repress the transcription of ERBB2/HER2. Now, we identified that PAX2 inhibits cell growth of ER+/HER2â tumor cells in a dose-dependent manner. Moreover, we have identified that cell growth inhibition can be achieved by expressing moderate levels of PAX2 in combination with tamoxifen treatment. Global run-on sequencing of cells overexpressing PAX2, when coupled with PAX2 ChIP-seq, identified common targets regulated by both PAX2 and tamoxifen. The data revealed that PAX2 can inhibit estrogen-induced gene transcription and this effect is enhanced by tamoxifen, suggesting that they converge on repression of the same targets. Moreover, PAX2 and tamoxifen have an additive effect and both induce coding genes and enhancer RNAs (eRNAs). PAX2âtamoxifen upregulated genes are also enriched with PAX2 eRNAs. The enrichment of eRNAs is associated with the highest expression of genes that positivity regulate apoptotic processes. In luminal tumors, the expression of a subset of these proapoptotic genes predicts good outcome and their expression are significantly reduced in tumors of patients with relapse to tamoxifen treatment. Mechanistically, PAX2 and tamoxifen coexert an antitumoral effect by maintaining high levels of transcription of tumor suppressors that promote cell death. The apoptotic effect is mediated in large part by the gene interferon regulatory factor 1. Altogether, we conclude that PAX2 contributes to better clinical outcome in tamoxifen treated ER-positive breast cancer patients by repressing estrogen signaling and inducing cell death related pathways
Global SUMOylation on active chromatin is an acute heat stress response restricting transcription
ArticleBackground
Cells have developed many ways to cope with external stress. One distinctive feature in acute proteotoxic stresses, such as heat shock (HS), is rapid post-translational modification of proteins by SUMOs (small ubiquitin-like modifier proteins; SUMOylation). While many of the SUMO targets are chromatin proteins, there is scarce information on chromatin binding of SUMOylated proteins in HS and the role of chromatin SUMOylation in the regulation of transcription.
Results
We mapped HS-induced genome-wide changes in chromatin occupancy of SUMO-2/3-modified proteins in K562 and VCaP cells using ChIP-seq. Chromatin SUMOylation was further correlated with HS-induced global changes in transcription using GRO-seq and RNA polymerase II (Pol2) ChIP-seq along with ENCODE data for K562 cells. HS induced a rapid and massive rearrangement of chromatin SUMOylation pattern: SUMOylation was gained at active promoters and enhancers associated with multiple transcription factors, including heat shock factor 1. Concomitant loss of SUMOylation occurred at inactive intergenic chromatin regions that were associated with CTCF-cohesin complex and SETDB1 methyltransferase complex. In addition, HS triggered a dynamic chromatin binding of SUMO ligase PIAS1, especially onto promoters. The HS-induced SUMOylation on chromatin was most notable at promoters of transcribed genes where it positively correlated with active transcription and Pol2 promoter-proximal pausing. Furthermore, silencing of SUMOylation machinery either by depletion of UBC9 or PIAS1 enhanced expression of HS-induced genes.
Conclusions
HS-triggered SUMOylation targets promoters and enhancers of actively transcribed genes where it restricts the transcriptional activity of the HS-induced genes. PIAS1-mediated promoter SUMOylation is likely to regulate Pol2-associated factors in HS.Publisherâs pd
Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia
MicroRNAs are well characterized in their role in silencing gene expression by targeting 3ÂŽ-UTR of mRNAs in cytoplasm. However, recent studies have shown that miRNAs have a role in the regulation of genes in the nucleus, where they are abundantly located. We show here that in mouse endothelial cell line (C166), nuclear microRNA miR-466c participates in the regulation of vascular endothelial growth factor a (Vegfa) gene expression in hypoxia. Upregulation of Vegfa expression in response to hypoxia was significantly compromised after removal of miR-466c with CRISPR-Cas9 genomic deletion. We identified a promoter-associated long non-coding RNA on mouse Vegfa promoter and show that miR-466c directly binds to this transcript to modulate Vegfa expression. Collectively, these observations suggest that miR-466c regulates Vegfa gene transcription in the nucleus by targeting the promoter, and expands on our understanding of the role of miRNAs well beyond their canonical role
SREBP1 Contributes to Resolution of Pro-inflammatory TLR4 Signaling by Reprogramming Fatty Acid Metabolism
Macrophages play pivotal roles in both the induction and resolution phases of inflammatory processes. Macrophages have been shown to synthesize anti-inflammatory fatty acids in an LXR-dependent manner, but whether the production of these species contributes to the resolution phase of inflammatory responses has not been established. Here, we identify a biphasic program of gene expression that drives production of anti-inflammatory fatty acids 12-24 hr following TLR4 activation and contributes to downregulation of mRNAs encoding pro-inflammatory mediators. Unexpectedly, rather than requiring LXRs, this late program of anti-inflammatory fatty acid biosynthesis is dependent on SREBP1 and results in the uncoupling of NFÎșB binding from gene activation. In contrast to previously identified roles of SREBP1 in promoting production of IL1ÎČ during the induction phase of inflammation, these studies provide evidence that SREBP1 also contributes to the resolution phase of TLR4-induced gene activation by reprogramming macrophage lipid metabolism
Transcriptional Profiling of Hypoxia-Regulated Non-coding RNAs in Human Primary Endothelial Cells
Hypoxia occurs in human atherosclerotic lesions and has multiple adverse effects on endothelial cell metabolism. Recently, key roles of long non-coding RNAs (lncRNAs) in the development of atherosclerosis have begun to emerge. In this study, we investigate the lncRNA profiles of human umbilical vein endothelial cells subjected to hypoxia using global run-on sequencing (GRO-Seq). We demonstrate that hypoxia regulates the nascent transcription of ~1800 lncRNAs. Interestingly, we uncover evidence that promoter-associated lncRNAs are more likely to be induced by hypoxia compared to enhancer-associated lncRNAs, which exhibit an equal distribution of up- and downregulated transcripts. We also demonstrate that hypoxia leads to a significant induction in the activity of super-enhancers next to transcription factors and other genes implicated in angiogenesis, cell survival and adhesion, whereas super-enhancers near several negative regulators of angiogenesis were repressed. Despite the majority of lncRNAs exhibiting low detection in RNA-Seq, a subset of lncRNAs were expressed at comparable levels to mRNAs. Among these, MALAT1, HYMAI, LOC730101, KIAA1656, and LOC339803 were found differentially expressed in human atherosclerotic lesions, compared to normal vascular tissue, and may thus serve as potential biomarkers for lesion hypoxia
NCoR Repression of LXRs Restricts Macrophage Biosynthesis of Insulin-Sensitizing Omega 3 Fatty Acids
SummaryMacrophage-mediated inflammation is a major contributor to obesity-associated insulin resistance. The corepressor NCoR interacts with inflammatory pathway genes in macrophages, suggesting that its removal would result in increased activity of inflammatory responses. Surprisingly, we find that macrophage-specific deletion of NCoR instead results in an anti-inflammatory phenotype along with robust systemic insulin sensitization in obese mice. We present evidence that derepression of LXRs contributes to this paradoxical anti-inflammatory phenotype by causing increased expression of genes that direct biosynthesis of palmitoleic acid and Ï3 fatty acids. Remarkably, the increased Ï3 fatty acid levels primarily inhibit NF-ÎșB-dependent inflammatory responses by uncoupling NF-ÎșB binding and enhancer/promoter histone acetylation from subsequent steps required for proinflammatory gene activation. This provides a mechanism for the in vivo anti-inflammatory insulin-sensitive phenotype observed in mice with macrophage-specific deletion of NCoR. Therapeutic methods to harness this mechanism could lead to a new approach to insulin-sensitizing therapies
Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci
Rationale: Genome-wide association studies have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cisregulatory elements but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation. Objective: Single-nucleus chromatin accessibility profiling of the human atherosclerotic lesions was used to investigate cell type-specific patterns of cisregulatory elements, to understand transcription factors establishing cell identity, and to interpret CAD-relevant, noncoding genetic variation. Methods and Results: We used single-nucleus ATAC-seq (assay for transposase-accessible chromatin with sequencing) to generate DNA accessibility maps in >7000 cells derived from human atherosclerotic lesions. We identified 5 major lesional cell types including endothelial cells, smooth muscle cells, monocyte/macrophages, natural killer/T cells, and B cells and further investigated subtype characteristics of macrophages and smooth muscle cells transitioning into fibromyocytes. We demonstrated that CAD-associated genetic variants are particularly enriched in endothelial and smooth muscle cell-specific open chromatin. Using single-cell coaccessibility and cis-expression quantitative trait loci information, we prioritized putative target genes and candidate regulatory elements for approximate to 30% of all known CAD loci. Finally, we performed genome-wide experimental fine-mapping of the CAD variants identified in genome-wide association studies using epigenetic quantitative trait loci analysis in primary human aortic endothelial cells and self-transcribing active regulatory region sequencing (STARR-Seq) massively parallel reporter assay in smooth muscle cells. This analysis identified potential causal single-nucleotide polymorphisms (SNPs) and the associated target gene for over 30 CAD loci. We present several examples where the chromatin accessibility and gene expression could be assigned to one cell type predicting the cell type of action for CAD loci. Conclusions: These findings highlight the potential of applying single-nucleus ATAC-seq to human tissues in revealing relative contributions of distinct cell types to diseases and in identifying genes likely to be influenced by noncoding genome-wide association study variants.</p
- âŠ