30 research outputs found

    Heightened Salience of Anger and Aggression in Female Adolescents With Borderline Personality Disorder—A Script-Based fMRI Study

    No full text
    Background: Anger and aggression belong to the core symptoms of borderline personality disorder. Although an early and specific treatment of BPD is highly relevant to prevent chronification, still little is known about anger and aggression and their neural underpinnings in adolescents with BPD.Method: Twenty female adolescents with BPD (age 15–17 years) and 20 female healthy adolescents (age 15–17 years) took part in this functional magnetic resonance imaging (fMRI) study. A script-driven imagery paradigm was used to induce rejection-based feelings of anger, which was followed by descriptions of self-directed and other-directed aggressive reactions. To investigate the specificity of the neural activation patterns for adolescent patients, results were compared with data from 34 female adults with BPD (age 18–50 years) and 32 female healthy adults (age 18–50 years).Results: Adolescents with BPD showed increased activations in the left posterior insula and left dorsal striatum as well as in the left inferior frontal cortex and parts of the mentalizing network during the rejection-based anger induction and the imagination of aggressive reactions compared to healthy adolescents. For the other-directed aggression phase, a significant diagnosis by age interaction confirmed that these results were specific for adolescents.Discussion: The results of this very first fMRI study on anger and aggression in adolescents with BPD suggest an enhanced emotional reactivity to and higher effort in controlling anger and aggression evoked by social rejection at an early developmental stage of the disorder. Since emotion dysregulation is a known mediator for aggression in BPD, the results point to the need of appropriate early interventions for adolescents with BPD

    A Drive towards Thermodynamic Efficiency for Dissipative Structures in Chemical Reaction Networks

    No full text
    Dissipative accounts of structure formation show that the self-organisation of complex structures is thermodynamically favoured, whenever these structures dissipate free energy that could not be accessed otherwise. These structures therefore open transition channels for the state of the universe to move from a frustrated, metastable state to another metastable state of higher entropy. However, these accounts apply as well to relatively simple, dissipative systems, such as convection cells, hurricanes, candle flames, lightning strikes, or mechanical cracks, as they do to complex biological systems. Conversely, interesting computational properties—that characterize complex biological systems, such as efficient, predictive representations of environmental dynamics—can be linked to the thermodynamic efficiency of underlying physical processes. However, the potential mechanisms that underwrite the selection of dissipative structures with thermodynamically efficient subprocesses is not completely understood. We address these mechanisms by explaining how bifurcation-based, work-harvesting processes—required to sustain complex dissipative structures—might be driven towards thermodynamic efficiency. We first demonstrate a simple mechanism that leads to self-selection of efficient dissipative structures in a stochastic chemical reaction network, when the dissipated driving chemical potential difference is decreased. We then discuss how such a drive can emerge naturally in a hierarchy of self-similar dissipative structures, each feeding on the dissipative structures of a previous level, when moving away from the initial, driving disequilibrium

    Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability

    Get PDF
    Contains fulltext : 102813-OA.pdf (publisher's version ) (Open Access)The pFC is critical for cognitive flexibility (i.e., our ability to flexibly adjust behavior to changing environmental demands), but also for cognitive stability (i.e., our ability to follow behavioral plans in the face of distraction). Behavioral research suggests that individuals differ in their cognitive flexibility and stability, and neurocomputational theories of working memory relate this variability to the concept of attractor stability in recurrently connected neural networks. We introduce a novel task paradigm to simultaneously assess flexible switching between task rules (cognitive flexibility) and task performance in the presence of irrelevant distractors (cognitive stability) and to furthermore assess the individual "spontaneous switching rate" in response to ambiguous stimuli to quantify the individual dispositional cognitive flexibility in a theoretically motivated way (i.e., as a proxy for attractor stability). Using fMRI in healthy human participants, a common network consisting of parietal and frontal areas was found for task switching and distractor inhibition. More flexible persons showed reduced activation and reduced functional coupling in frontal areas, including the inferior frontal junction, during task switching. Most importantly, the individual spontaneous switching rate antagonistically affected the functional coupling between inferior frontal junction and the superior frontal gyrus during task switching and distractor inhibition, respectively, indicating that individual differences in cognitive flexibility and stability are indeed related to a common prefrontal neural mechanism. We suggest that the concept of attractor stability of prefrontal working memory networks is a meaningful model for individual differences in cognitive stability versus flexibility.15 p

    Stochastic dynamics underlying cognitive stability and flexibility

    No full text
    Cognitive stability and flexibility are core functions in the successful pursuit of behavioral goals. While there is evidence for a common frontoparietal network underlying both functions and for a key role of dopamine in the modulation of flexible versus stable behavior, the exact neurocomputational mechanisms underlying those executive functions and their adaptation to environmental demands are still unclear. In this work we study the neurocomputational mechanisms underlying cue based task switching (flexibility) and distractor inhibition (stability) in a paradigm specifically designed to probe both functions. We develop a physiologically plausible, explicit model of neural networks that maintain the currently active task rule in working memory and implement the decision process. We simplify the four-choice decision network to a nonlinear drift-diffusion process that we canonically derive from a generic winner-take-all network model. By fitting our model to the behavioral data of individual subjects, we can reproduce their full behavior in terms of decisions and reaction time distributions in baseline as well as distractor inhibition and switch conditions. Furthermore, we predict the individual hemodynamic response timecourse of the rule-representing network and localize it to a frontoparietal network including the inferior frontal junction area and the intraparietal sulcus, using functional magnetic resonance imaging. This refines the understanding of task-switch-related frontoparietal brain activity as reflecting attractor-like working memory representations of task rules. Finally, we estimate the subject-specific stability of the rule-representing attractor states in terms of the minimal action associated with a transition between different rule states in the phase-space of the fitted models. This stability measure correlates with switching-specific thalamocorticostriatal activation, i.e., with a system associated with flexible working memory updating and dopaminergic modulation of cognitive flexibility. These results show that stochastic dynamical systems can implement the basic computations underlying cognitive stability and flexibility and explain neurobiological bases of individual differences

    High-resolution variations in size, number and arrangement of air bubbles in the EPICA DML (Antarcitca) ice core

    Get PDF
    ABSTRACT. We investigated the large-scale (10–1000m) and small-scale (mm–cm) variations in size, number and arrangement of air bubbles in the EPICA Dronning Maud Land (EDML) (Antarctica) ice core, down to the end of the bubble/hydrate transition (BHT) zone. On the large scale, the bubble number density shows a general correlation with the palaeo-temperature proxy, d18O, and the dust concentration, which means that in Holocene ice there are fewer bubbles than in glacial ice. Small-scale variations in bubble number and size were identified and compared. Above the BHT zone there exists a strong anticorrelation between bubble number density and mean bubble size. In glacial ice, layers of high number density and small bubble size are linked with layers with high impurity content, identified as cloudy bands. Therefore, we regard impurities as a controlling factor for the formation and distribution of bubbles in glacial ice. The anticorrelation inverts in the middle of the BHT zone. In the lower part of the BHT zone, bubble-free layers exist that are also associated with cloudy bands. The high contrast in bubble number density in glacial ice, induced by the impurities, indicates a much more pronounced layering in glacial firn than in modern firn

    Stochastic Chaos and Markov Blankets

    Get PDF
    In this treatment of random dynamical systems, we consider the existence—and identification—of conditional independencies at nonequilibrium steady-state. These independencies underwrite a particular partition of states, in which internal states are statistically secluded from external states by blanket states. The existence of such partitions has interesting implications for the information geometry of internal states. In brief, this geometry can be read as a physics of sentience, where internal states look as if they are inferring external states. However, the existence of such partitions—and the functional form of the underlying densities—have yet to be established. Here, using the Lorenz system as the basis of stochastic chaos, we leverage the Helmholtz decomposition—and polynomial expansions—to parameterise the steady-state density in terms of surprisal or self-information. We then show how Markov blankets can be identified—using the accompanying Hessian—to characterise the coupling between internal and external states in terms of a generalised synchrony or synchronisation of chaos. We conclude by suggesting that this kind of synchronisation may provide a mathematical basis for an elemental form of (autonomous or active) sentience in biology.publishe

    Localization of the rule module.

    No full text
    <p>Using the predicted BOLD time courses for the modeled rule module, we were able to localize it to the left inferior frontal junction (IFJ) and the left intraparietal sulcus (IPS), both known to be crucially involved in task switching and distractor inhibition. Weaker activity is observed in the superior frontal gyrus (SFG). The single-voxel threshold of <i>p</i> = 10<sup>–7</sup> corresponds to <i>p</i> = 0.05 Bonferroni corrected for the total number of voxels.</p
    corecore