68 research outputs found

    Parametrical investigation for the optimization of spherical jet-stirred reactors design using large eddy simulations

    Get PDF
    Abstract Due to the importance of gas-phase chemical reaction kinetics in low-emission combustion, stirred tank reactors have been used for decades as an experimental tool to study high- and low-temperature oxidation. A Jet-Stirred Reactor (JSR) setup is valuable to determine the evolution of species mole fractions. For the accuracy of the experimental results, it is important that a JSR is designed such that the concentration field is as homogeneous as possible in order to avoid disturbance of the chemical kinetics. In this work, numerical simulations were performed to investigate the mixing in a JSR chamber. The turbulent structures inside the JSR and the nozzles are captured using Large Eddy Simulations. We conducted numerically a parametric study to evaluate the effects of thermodynamic conditions and geometrical parameters on the mixing characteristics. More specifically, the diameter of the spherical chamber is modified together with the diameter of the nozzles through which fresh gases are fed. The characterization of the gas flow inside a typical spherical JSR layout and results derived by the normalized standard deviation of a tracer mass fraction show that a reduction of the JSR diameter at high pressures improves the homogeneity. Further, we propose a new optimized configuration consisting of six nozzles pointing to the center of the reactor which provides a more uniform composition compared to the standard JSR design

    Systematic Analysis of Double-Ionization Dynamics Based on Four-Body Dalitz Plots

    Get PDF
    We report on an experimental and theoretical systematic study of double ionization of helium by ion impact in terms of four-particle Dalitz plots. Several collision systems covering abroad range of perturbation parameters η (projectile charge to speed ratio) were investigated. With increasing η we observe a systematic trend from features, characteristic to correlated double-ionization mechanisms, to signatures of higher-order processes not requiring electron-electron correlations [the mechanism called two-step-two projectile-electron interaction (TS-2)]. The data for the largest η can qualitatively be amazingly well described by a simple model only including the TS-2 mechanism

    Sequential and Direct Two-Photon Double Ionization of D₂ at Flash

    Get PDF
    Sequential and direct two-photon double ionization (DI) of D2 molecule is studied experimentally and theoretically at a photon energy of 38.8 eV. Experimental and theoretical kinetic energy releases of D++D+fragments, consisting of the contributions of sequential DI via the D2+(1sσg) state and direct DI via a virtual state, agree well with each other

    Massenspektrometrische Analyse laminarer Flammen als Modellsysteme für alternative Verbrennungskonzepte

    No full text
    Moshammer K. Massenspektrometrische Analyse laminarer Flammen als Modellsysteme für alternative Verbrennungskonzepte. Bielefeld; 2013

    Detailed mass spectrometric and modeling study of isomeric butene flames

    Get PDF
    Schenk M, Leon L, Moshammer K, et al. Detailed mass spectrometric and modeling study of isomeric butene flames. COMBUSTION AND FLAME. 2013;160(3):487-503
    corecore