285 research outputs found

    Discussion of “clustering on dissimilarity Representations for detecting mislabelled Seismic signals at Nevado del Ruiz Volcano” by Mauricio Orozco-Alzate, and César Germán Castellanos-Domínguez

    Get PDF
    The authors are to be congratulated for a systematic investigationof the accurate and non subjective classifying approach in seismic research. The authors have conducted several clustering algorithms to the seismic event records from Volcanological and SeismologicalObservatory at Manizales. Their objective was to improve the grouping of seismic data (i.e., volcano-tectonic earthquakes, long-period earthquakes and icequakes) digitized at 100.16 Hz sampling frequency.Their study seems adding new approach to their previous work of Langer et al. (2006) who applied different classification techniques to seismic data

    Hydrologic homogeneous regions using monthly Streamflow in Turkey

    Get PDF
    Cluster analysis of gauged streamflow records into homogeneous and robust regions is an important tool for the characterization of hydrologic systems. In this paper we applied the hierarchical cluster analysis to the task of objectively classifying streamflow data into regions encompassing similar streamflow patterns over Turkey. The performance of three standardization techniques was also tested, and standardizing by range was found better than standardizing with zero mean and unit variance. Clustering was carried out using Ward’s minimum variance method which became prominent in managing water resources with squared Euclidean dissimilarity measures on 80 streamflow stations. The stations have natural flow regimes where no intensive river regulation had occurred. A general conclusion drawn is that the zones having similar streamflow pattern were not be overlapped well with the conventional climate zones of Turkey; however, they are coherent with the climate zones of Turkey recently redefined by the cluster analysis to total precipitation data as well as homogenous streamflow zones of Turkey determined by the rotated principal component analysis. The regional streamflow information in this study can significantly improve the accuracy of flow predictions in ungauged watersheds

    Relationships Between Pacific and Atlantic Ocean Sea Surface Temperatures and U.S. Streamflow Variability

    Full text link
    An evaluation of Pacific and Atlantic Ocean sea surface temperatures (SSTs) and continental U.S. streamflow was performed to identify coupled regions of SST and continental U.S. streamflow variability. Both SSTs and streamflow displayed temporal variability when applying the singular value decomposition (SVD) statistical method. Initially, an extended temporal evaluation was performed using the entire period of record (i.e., all years from 1951 to 2002). This was followed by an interdecadal-temporal evaluation for the Pacific (Atlantic) Ocean based on the phase of the Pacific Decadal Oscillation (PDO) (Atlantic Multidecadal Oscillation (AMO)). Finally, an extended temporal evaluation was performed using detrended SST and streamflow data. A lead time approach was assessed in which the previous year\u27s spring-summer season Pacific Ocean (Atlantic Ocean) SSTs were evaluated with the current water year continental U.S. streamflow. During the cold phase of the PDO, Pacific Ocean SSTs influenced streamflow regions (southeast, northwest, southwest, and northeast United States) most often associated with El Niño–Southern Oscillation (ENSO), while during the warm phase of the PDO, Pacific Ocean SSTs influenced non-ENSO streamflow regions (Upper Colorado River basin and middle Atlantic United States). ENSO and the PDO were identified by the Pacific Ocean SST SVD first temporal expansion series as climatic influences for the PDO cold phase, PDO warm phase, and the all years analysis. Additionally, the phase of the AMO resulted in continental U.S. streamflow variability when evaluating Atlantic Ocean SSTs. During the cold phase of the AMO, Atlantic Ocean SSTs influenced middle Atlantic and central U.S. streamflow, while during the warm phase of the AMO, Atlantic Ocean SSTs influenced upper Mississippi River basin, peninsular Florida, and northwest U.S. streamflow. The AMO signal was identified in the Atlantic Ocean SST SVD first temporal expansion series. Applying SVD, first temporal expansions series were developed for Pacific and Atlantic Ocean SSTs and continental U.S. streamflow. The first temporal expansion series of SSTs and streamflow were strongly correlated, which could result in improved streamflow predictability

    Charged Scalar Self-Mass during Inflation

    Full text link
    We compute the one loop self-mass of a charged massless, minimally coupled scalar in a locally de Sitter background geometry. The computation is done in two different gauges: the noninvariant generalization of Feynman gauge which gives the simplest expression for the photon propagator and the de Sitter invariant gauge of Allen and Jacobson. In each case dimensional regularization is employed and fully renormalized results are obtained. By using our result in the linearized, effective field equations one can infer how the scalar responds to the dielectric medium produced by inflationary particle production. We also work out the result for a conformally coupled scalar. Although the conformally coupled case is of no great physical interest the fact that we obtain a manifestly de Sitter invariant form for its self-mass-squared establishes that our noninvariant gauge introduces no physical breaking of de Sitter invariance at one loop order.Comment: 41 pages, LaTeX 2epsilon, 3 figures, uses axodra

    The Lateral Membrane Organization and Dynamics of Myelin Proteins PLP and MBP Are Dictated by Distinct Galactolipids and the Extracellular Matrix

    Get PDF
    In the central nervous system, lipid-protein interactions are pivotal for myelin maintenance, as these interactions regulate protein transport to the myelin membrane as well as the molecular organization within the sheath. To improve our understanding of the fundamental properties of myelin, we focused here on the lateral membrane organization and dynamics of peripheral membrane protein 18.5-kDa myelin basic protein (MBP) and transmembrane protein proteolipid protein (PLP) as a function of the typical myelin lipids galactosylceramide (GalC),and sulfatide, and exogenous factors such as the extracellular matrix proteins laminin-2 and fibronectin, employing an oligodendrocyte cell line, selectively expressing the desired galactolipids. The dynamics of MBP were monitored by z-scan point fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS),while PLP dynamics in living cells were investigated by circular scanning FCS. The data revealed that on an inert substrate the diffusion rate of 18.5-kDa MBP increased in GalC-expressing cells, while the diffusion coefficient of PLP was decreased in sulfatide-containing cells. Similarly, when cells were grown on myelination-promoting laminin-2, the lateral diffusion coefficient of PLP was decreased in sulfatide-containing cells. In contrast, PLP's diffusion rate increased substantially when these cells were grown on myelination-inhibiting fibronectin. Additional biochemical analyses revealed that the observed differences in lateral diffusion coefficients of both proteins can be explained by differences in their biophysical, i.e., galactolipid environment, specifically with regard to their association with lipid rafts. Given the persistence of pathological fibronectin aggregates in multiple sclerosis lesions, this fundamental insight into the nature and dynamics of lipid-protein interactions will be instrumental in developing myelin regenerative strategies

    Gravity Gets There First with Dark Matter Emulators

    Full text link
    We discuss the implications for gravity wave detectors of a class of modified gravity theories which dispense with the need for dark matter. These models, which are known as Dark Matter Emulators, have the property that weak gravitational waves couple to the metric that would follow from general relativity without dark matter whereas ordinary particles couple to a combination of the metric and other fields which reproduces the result of general relativity with dark matter. We show that there is an appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the same source, with the gravity waves always arriving first. We compute the expected time lags for GRB 070201, for SN 1987a, and for Sco-X1. We estimate the probable error by taking account of the uncertainty in position, and by using three different dark matter profiles.Comment: 9 pages, no figures. Changes in response to referee comments. To be published in Phys. Rev. D. under the title "Reduced time delay for gravitational waves with dark matter emulators

    Regulation of cell proliferation by nucleocytoplasmic dynamics of postnatal and embryonic exon-II-containing MBP isoforms

    Get PDF
    AbstractThe only known structural protein required for formation of myelin, produced by oligodendrocytes in the central nervous system, is myelin basic protein (MBP). This peripheral membrane protein has different developmentally-regulated isoforms, generated by alternative splicing. The isoforms are targeted to distinct subcellular locations, which is governed by the presence or absence of exon-II, although their functional expression is often less clear. Here, we investigated the role of exon-II-containing MBP isoforms and their link with cell proliferation. Live-cell imaging and FRAP analysis revealed a dynamic nucleocytoplasmic translocation of the exon-II-containing postnatal 21.5-kDa MBP isoform upon mitogenic modulation. Its nuclear export was blocked upon treatment with leptomycin B, an inhibitor of nuclear protein export. Next to the postnatal MBP isoforms, embryonic exon-II-containing MBP (e-MBP) is expressed in primary (immature) oligodendrocytes. The e-MBP isoform is exclusively present in OLN-93 cells, a rat-derived oligodendrocyte progenitor cell line, and interestingly, also in several non-CNS cell lines. As seen for postnatal MBPs, a similar nucleocytoplasmic translocation upon mitogenic modulation was observed for e-MBP. Thus, upon serum deprivation, e-MBP was excluded from the nucleus, whereas re-addition of serum re-established its nuclear localization, with a concomitant increase in proliferation. Knockdown of MBP by shRNA confirmed a role for e-MBP in OLN-93 proliferation, whereas the absence of e-MBP similarly reduced the proliferative capacity of non-CNS cell lines. Thus, exon-II-containing MBP isoforms may regulate cell proliferation via a mechanism that relies on their dynamic nuclear import and export, which is not restricted to the oligodendrocyte lineage

    LOOC UP: Locating and observing optical counterparts to gravitational wave bursts

    Full text link
    Gravitational wave (GW) bursts (short duration signals) are expected to be associated with highly energetic astrophysical processes. With such high energies present, it is likely these astrophysical events will have signatures in the EM spectrum as well as in gravitational radiation. We have initiated a program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves" (LOOC UP) to promptly search for counterparts to GW burst candidates. The proposed method analyzes near real-time data from the LIGO-Virgo network, and then uses a telescope network to seek optical-transient counterparts to candidate GW signals. We carried out a pilot study using S5/VSR1 data from the LIGO-Virgo network to develop methods and software tools for such a search. We will present the method, with an emphasis on the potential for such a search to be carried out during the next science run of LIGO and Virgo, expected to begin in 2009.Comment: 11 pages, 2 figures; v2) added acknowledgments, additional references, and minor text changes v3) added 1 figure, additional references, and minor text changes. v4) Updated references and acknowledgments. To be published in the GWDAW 12 Conf. Proc. by Classical and Quantum Gravit

    On Loops in Inflation II: IR Effects in Single Clock Inflation

    Get PDF
    In single clock models of inflation the coupling between modes of very different scales does not have any significant dynamical effect during inflation. It leads to interesting projection effects. Larger and smaller modes change the relation between the scale a mode of interest will appear in the post-inflationary universe and will also change the time of horizon crossing of that mode. We argue that there are no infrared projection effects in physical questions, that there are no effects from modes of longer wavelength than the one of interest. These potential effects cancel when computing fluctuations as a function of physically measurable scales. Modes on scales smaller than the one of interest change the mapping between horizon crossing time and scale. The correction to the mapping computed in the absence of fluctuations is enhanced by a factor N_e, the number of e-folds of inflation between horizon crossing and reheating. The new mapping is stochastic in nature but its variance is not enhanced by N_e.Comment: 13 pages, 1 figure; v2: JHEP published version, added minor comments and reference
    corecore