285 research outputs found
Discussion of “clustering on dissimilarity Representations for detecting mislabelled Seismic signals at Nevado del Ruiz Volcano” by Mauricio Orozco-Alzate, and César Germán Castellanos-Domínguez
The authors are to be congratulated for a systematic investigationof the accurate and non subjective classifying approach in seismic research. The authors have conducted several clustering algorithms to the seismic event records from Volcanological and SeismologicalObservatory at Manizales. Their objective was to improve the grouping of seismic data (i.e., volcano-tectonic earthquakes, long-period earthquakes and icequakes) digitized at 100.16 Hz sampling frequency.Their study seems adding new approach to their previous work of Langer et al. (2006) who applied different classification techniques to seismic data
Hydrologic homogeneous regions using monthly Streamflow in Turkey
Cluster analysis of gauged streamflow records into homogeneous and robust regions is an important tool for the characterization of hydrologic systems. In this paper we applied the hierarchical cluster analysis to the task of objectively classifying streamflow data into regions encompassing similar streamflow patterns over Turkey. The performance of three standardization techniques was also tested, and standardizing by range was found better than standardizing with zero mean and unit variance. Clustering was carried out using Ward’s minimum variance method which became prominent in managing water resources with squared Euclidean dissimilarity measures on 80 streamflow stations. The stations have natural flow regimes where no intensive river regulation had occurred. A general conclusion drawn is that the zones having similar streamflow pattern were not be overlapped well with the conventional climate zones of Turkey; however, they are coherent with the climate zones of Turkey recently redefined by the cluster analysis to total precipitation data as well as homogenous streamflow zones of Turkey determined by the rotated principal component analysis. The regional streamflow information in this study can significantly improve the accuracy of flow predictions in ungauged watersheds
Relationships Between Pacific and Atlantic Ocean Sea Surface Temperatures and U.S. Streamflow Variability
An evaluation of Pacific and Atlantic Ocean sea surface temperatures (SSTs) and continental U.S. streamflow was performed to identify coupled regions of SST and continental U.S. streamflow variability. Both SSTs and streamflow displayed temporal variability when applying the singular value decomposition (SVD) statistical method. Initially, an extended temporal evaluation was performed using the entire period of record (i.e., all years from 1951 to 2002). This was followed by an interdecadal-temporal evaluation for the Pacific (Atlantic) Ocean based on the phase of the Pacific Decadal Oscillation (PDO) (Atlantic Multidecadal Oscillation (AMO)). Finally, an extended temporal evaluation was performed using detrended SST and streamflow data. A lead time approach was assessed in which the previous year\u27s spring-summer season Pacific Ocean (Atlantic Ocean) SSTs were evaluated with the current water year continental U.S. streamflow. During the cold phase of the PDO, Pacific Ocean SSTs influenced streamflow regions (southeast, northwest, southwest, and northeast United States) most often associated with El Niño–Southern Oscillation (ENSO), while during the warm phase of the PDO, Pacific Ocean SSTs influenced non-ENSO streamflow regions (Upper Colorado River basin and middle Atlantic United States). ENSO and the PDO were identified by the Pacific Ocean SST SVD first temporal expansion series as climatic influences for the PDO cold phase, PDO warm phase, and the all years analysis. Additionally, the phase of the AMO resulted in continental U.S. streamflow variability when evaluating Atlantic Ocean SSTs. During the cold phase of the AMO, Atlantic Ocean SSTs influenced middle Atlantic and central U.S. streamflow, while during the warm phase of the AMO, Atlantic Ocean SSTs influenced upper Mississippi River basin, peninsular Florida, and northwest U.S. streamflow. The AMO signal was identified in the Atlantic Ocean SST SVD first temporal expansion series. Applying SVD, first temporal expansions series were developed for Pacific and Atlantic Ocean SSTs and continental U.S. streamflow. The first temporal expansion series of SSTs and streamflow were strongly correlated, which could result in improved streamflow predictability
Recommended from our members
Yoga Therapy for the Mind Eight-Week Course: Participants׳ Experiences
Mindfulness-based therapies are becoming increasingly common in the treatment of mental health conditions. While the popularity of yoga continues to rise in Western culture, little has been done to explore the psychological benefits of yoga from a qualitative, clinical perspective. This study explores participant experiences of the “Yoga Therapy for the Mind Eight-Week Course” (YTFTM), an international, manualized yoga and mindfulness-based intervention for depression and anxiety. Eight female participants took part in semi-structured interviews, and transcripts were analyzed using an interpretative phenomenological analysis, with four master themes emerging: “Personal Journey of Change,” “Ambivalence,” “Mind/Body Connection,” and “Group Experience.” The findings highlight potential challenges of yoga and mindfulness-based interventions and the importance of providing adequate support in overcoming these. Findings also reveal that participants experience psychological benefits from the practice of yoga asana in addition to mindfulness, such as a more holistic understanding of psychological distress, adaptive coping strategies, and enhanced well-being
Charged Scalar Self-Mass during Inflation
We compute the one loop self-mass of a charged massless, minimally coupled
scalar in a locally de Sitter background geometry. The computation is done in
two different gauges: the noninvariant generalization of Feynman gauge which
gives the simplest expression for the photon propagator and the de Sitter
invariant gauge of Allen and Jacobson. In each case dimensional regularization
is employed and fully renormalized results are obtained. By using our result in
the linearized, effective field equations one can infer how the scalar responds
to the dielectric medium produced by inflationary particle production. We also
work out the result for a conformally coupled scalar. Although the conformally
coupled case is of no great physical interest the fact that we obtain a
manifestly de Sitter invariant form for its self-mass-squared establishes that
our noninvariant gauge introduces no physical breaking of de Sitter invariance
at one loop order.Comment: 41 pages, LaTeX 2epsilon, 3 figures, uses axodra
The Lateral Membrane Organization and Dynamics of Myelin Proteins PLP and MBP Are Dictated by Distinct Galactolipids and the Extracellular Matrix
In the central nervous system, lipid-protein interactions are pivotal for myelin maintenance, as these interactions regulate protein transport to the myelin membrane as well as the molecular organization within the sheath. To improve our understanding of the fundamental properties of myelin, we focused here on the lateral membrane organization and dynamics of peripheral membrane protein 18.5-kDa myelin basic protein (MBP) and transmembrane protein proteolipid protein (PLP) as a function of the typical myelin lipids galactosylceramide (GalC),and sulfatide, and exogenous factors such as the extracellular matrix proteins laminin-2 and fibronectin, employing an oligodendrocyte cell line, selectively expressing the desired galactolipids. The dynamics of MBP were monitored by z-scan point fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS),while PLP dynamics in living cells were investigated by circular scanning FCS. The data revealed that on an inert substrate the diffusion rate of 18.5-kDa MBP increased in GalC-expressing cells, while the diffusion coefficient of PLP was decreased in sulfatide-containing cells. Similarly, when cells were grown on myelination-promoting laminin-2, the lateral diffusion coefficient of PLP was decreased in sulfatide-containing cells. In contrast, PLP's diffusion rate increased substantially when these cells were grown on myelination-inhibiting fibronectin. Additional biochemical analyses revealed that the observed differences in lateral diffusion coefficients of both proteins can be explained by differences in their biophysical, i.e., galactolipid environment, specifically with regard to their association with lipid rafts. Given the persistence of pathological fibronectin aggregates in multiple sclerosis lesions, this fundamental insight into the nature and dynamics of lipid-protein interactions will be instrumental in developing myelin regenerative strategies
Gravity Gets There First with Dark Matter Emulators
We discuss the implications for gravity wave detectors of a class of modified
gravity theories which dispense with the need for dark matter. These models,
which are known as Dark Matter Emulators, have the property that weak
gravitational waves couple to the metric that would follow from general
relativity without dark matter whereas ordinary particles couple to a
combination of the metric and other fields which reproduces the result of
general relativity with dark matter. We show that there is an appreciable
difference in the Shapiro delays of gravitational waves and photons or
neutrinos from the same source, with the gravity waves always arriving first.
We compute the expected time lags for GRB 070201, for SN 1987a, and for Sco-X1.
We estimate the probable error by taking account of the uncertainty in
position, and by using three different dark matter profiles.Comment: 9 pages, no figures. Changes in response to referee comments. To be
published in Phys. Rev. D. under the title "Reduced time delay for
gravitational waves with dark matter emulators
Regulation of cell proliferation by nucleocytoplasmic dynamics of postnatal and embryonic exon-II-containing MBP isoforms
AbstractThe only known structural protein required for formation of myelin, produced by oligodendrocytes in the central nervous system, is myelin basic protein (MBP). This peripheral membrane protein has different developmentally-regulated isoforms, generated by alternative splicing. The isoforms are targeted to distinct subcellular locations, which is governed by the presence or absence of exon-II, although their functional expression is often less clear. Here, we investigated the role of exon-II-containing MBP isoforms and their link with cell proliferation. Live-cell imaging and FRAP analysis revealed a dynamic nucleocytoplasmic translocation of the exon-II-containing postnatal 21.5-kDa MBP isoform upon mitogenic modulation. Its nuclear export was blocked upon treatment with leptomycin B, an inhibitor of nuclear protein export. Next to the postnatal MBP isoforms, embryonic exon-II-containing MBP (e-MBP) is expressed in primary (immature) oligodendrocytes. The e-MBP isoform is exclusively present in OLN-93 cells, a rat-derived oligodendrocyte progenitor cell line, and interestingly, also in several non-CNS cell lines. As seen for postnatal MBPs, a similar nucleocytoplasmic translocation upon mitogenic modulation was observed for e-MBP. Thus, upon serum deprivation, e-MBP was excluded from the nucleus, whereas re-addition of serum re-established its nuclear localization, with a concomitant increase in proliferation. Knockdown of MBP by shRNA confirmed a role for e-MBP in OLN-93 proliferation, whereas the absence of e-MBP similarly reduced the proliferative capacity of non-CNS cell lines. Thus, exon-II-containing MBP isoforms may regulate cell proliferation via a mechanism that relies on their dynamic nuclear import and export, which is not restricted to the oligodendrocyte lineage
LOOC UP: Locating and observing optical counterparts to gravitational wave bursts
Gravitational wave (GW) bursts (short duration signals) are expected to be
associated with highly energetic astrophysical processes. With such high
energies present, it is likely these astrophysical events will have signatures
in the EM spectrum as well as in gravitational radiation. We have initiated a
program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in
Gravitational Waves" (LOOC UP) to promptly search for counterparts to GW burst
candidates. The proposed method analyzes near real-time data from the
LIGO-Virgo network, and then uses a telescope network to seek optical-transient
counterparts to candidate GW signals. We carried out a pilot study using
S5/VSR1 data from the LIGO-Virgo network to develop methods and software tools
for such a search. We will present the method, with an emphasis on the
potential for such a search to be carried out during the next science run of
LIGO and Virgo, expected to begin in 2009.Comment: 11 pages, 2 figures; v2) added acknowledgments, additional
references, and minor text changes v3) added 1 figure, additional references,
and minor text changes. v4) Updated references and acknowledgments. To be
published in the GWDAW 12 Conf. Proc. by Classical and Quantum Gravit
On Loops in Inflation II: IR Effects in Single Clock Inflation
In single clock models of inflation the coupling between modes of very
different scales does not have any significant dynamical effect during
inflation. It leads to interesting projection effects. Larger and smaller modes
change the relation between the scale a mode of interest will appear in the
post-inflationary universe and will also change the time of horizon crossing of
that mode. We argue that there are no infrared projection effects in physical
questions, that there are no effects from modes of longer wavelength than the
one of interest. These potential effects cancel when computing fluctuations as
a function of physically measurable scales. Modes on scales smaller than the
one of interest change the mapping between horizon crossing time and scale. The
correction to the mapping computed in the absence of fluctuations is enhanced
by a factor N_e, the number of e-folds of inflation between horizon crossing
and reheating. The new mapping is stochastic in nature but its variance is not
enhanced by N_e.Comment: 13 pages, 1 figure; v2: JHEP published version, added minor comments
and reference
- …