280 research outputs found

    Steam-based charging-discharging of a PCM heat storage

    Get PDF
    Latent heat storage and efficient heat transport technology helps to utilize the intermittent solar energy for continuous and near isothermal  applications. However, many latent heat storages face challenges of storage charging, heat retaining, and discharging the stored heat. This paper tries to address the challenges of heat transportation and storage charging-discharging issues. The heat transportation from the receiver over some distance, from outside to the kitchen, is carried out with a stainless pipeline and water as heat transfer fluids. However, the  charging-discharging process is carried by conduction method with the help of fins. In addition, the stored heat is retained for about one-two days by using aerogel insulation. The latent heat is stored in a phase change material (PCM), nitrate salt (mixture of 60% NaNO3 and 40% KNO3), which melts at 222ºC and has 109 J/g specific heat of fusion. The storage has the capacity of storing up to 250ºC heat and supply this heat isothermally during baking in the liquid-solid phase transition. However, the sensible heat stored in the solid and liquid form of the PCM is used to perform additional applications that do not require uniform heat which includes bread baking, kita (large pancake) baking and water boiling. The low thermal conductivity of PCM is enhanced by using extended aluminum fins that are attached to the baking plate and extruded inward to the storage. In this paper, two-phase loop thermosyphon of steam is used to manage the long distance heat transportation required between the receiver (outside) and the storage (inside a house). The steam in the thermosyphon flow has restricted to a maximum working temperature of 250ºC. Steam is selected for its highest heat capacity, availability and stable nature. It carries heat from the collector focus point and condenses in a coiled pipe imbedded in aluminum plate placed on top of the storage. Many fins are solidly attached to this plate to conduct the heat down to the PCM inside the storage during charging. This design configuration avoids pressure development inside the PCM storage and the charging-discharging temperature is recorded in three zones (top, middle and bottom) of the storage. The experimental and numerical results show that the heat transportation, retention and charging-discharging methods are effective.Keywords: Solar energy, PCM storage, Latent heat storage, Two-phase thermosyphon

    Numerical and experimental Analysis of Solar Injera Baking with a PCM Heat Storage

    Get PDF
    Today, many developing countries are using biomass as their primary energy supply. However, this energy affects the environment, health and safety of women and children. In addition, utilization of this energy using traditional cooking stoves is causing indoor air pollution and in turn health problems to millions of people. To overcome such problems, efforts are being made by researchers globally and are suggesting alternative safe energy sources. This paper demonstrates solar cooker with an integrated PCM thermal storage and heat transportation loop system suitable for high temperature applications. The system has designed to address Injera baking application. Injera, a fermented flat bread type, is the most common food type served three to four times a day in Ethiopia. Other countries like Eritrea, Somalia, Sudan and Yemen also use this food. The storage system has storing capacity of heat up to 2500C and it can retain this heat for about two days. The storage has coupled to a polar mounted concentrator, fixed receiver and used steam heat transfer fluid. The steam circulates naturally between the evaporator and condenser in a closed loop. The paper focuses on indirect charging, simultaneous charging-discharging and discharging of the stored heat for the purpose of Injera baking. The frying pan is a custom-made aluminum plate casted by embedding a 10mm coiled stainless steel steam pipe as heating element. The pan is 500mm in diameter and 30mm thick; and the fins are 20mm in diameter and 140mm long. The fins have immersed into a 20kg PCM, which is coupled to a 1.8m diameter parabolic dish collector. The solar fryer demonstrates Injera baking for average family size. Baking is tested from the stored heat, while storage is charging. A fully charged storage has supplied enough heat to baked average household Injera demands about 19Injeras and additional breads with the remaining heat.Keywords: Solar Injera baking; PCM charging; PCM storage; Solar Injera stove design; Solar cooking; Ethiopia

    Scalable Synthesis of Micron Size Crystals of CH3NH3PbI3 at Room Temperature in Acetonitrile via Rapid Reactive Crystallization

    Get PDF
    From application point of view, scalable, facile and rapid synthesis method for mass production of a homogeneous and phase pure CH3NH3PbI3 micron size crystal at the industry level is still highly required, although it has been claimed that the CH3NH3PbI3 crystals can be prepared by solution-annealing the precursors at elevated temperature or prolonged reaction time. Herein, polycrystalline CH3NH3PbI3 micron size crystals can be prepared by reactive crystallization of PbI2 and CH3NH3I in a stoichiometric ratio at room temperature. TXM (Transmission X-ray Microscopy), optical microscope, TEM and TEM-EDX analysis were used to confirm the nature of the CH3NH3PbI3 product. Moreover, Ostwald ripening of iodide ion into PbI2 is proposed as the key step to form 3D PbI3−, followed by the intercalation of CH3NH3+ for this reactive crystallization. Interestingly, this result suggests that industry level mass production of micron CH3NH3PbI3 crystals is possible with this novel synthesis method

    A Combination of Compositional Index and Genetic Algorithm for Predicting Transmembrane Helical Segments

    Get PDF
    Transmembrane helix (TMH) topology prediction is becoming a focal problem in bioinformatics because the structure of TM proteins is difficult to determine using experimental methods. Therefore, methods that can computationally predict the topology of helical membrane proteins are highly desirable. In this paper we introduce TMHindex, a method for detecting TMH segments using only the amino acid sequence information. Each amino acid in a protein sequence is represented by a Compositional Index, which is deduced from a combination of the difference in amino acid occurrences in TMH and non-TMH segments in training protein sequences and the amino acid composition information. Furthermore, a genetic algorithm was employed to find the optimal threshold value for the separation of TMH segments from non-TMH segments. The method successfully predicted 376 out of the 378 TMH segments in a dataset consisting of 70 test protein sequences. The sensitivity and specificity for classifying each amino acid in every protein sequence in the dataset was 0.901 and 0.865, respectively. To assess the generality of TMHindex, we also tested the approach on another standard 73-protein 3D helix dataset. TMHindex correctly predicted 91.8% of proteins based on TM segments. The level of the accuracy achieved using TMHindex in comparison to other recent approaches for predicting the topology of TM proteins is a strong argument in favor of our proposed method. Availability: The datasets, software together with supplementary materials are available at: http://faculty.uaeu.ac.ae/nzaki/TMHindex.htm

    Strategies for implementing genomic selection in family-based aquaculture breeding schemes: double haploid sib test populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simulation studies have shown that accuracy and genetic gain are increased in genomic selection schemes compared to traditional aquaculture sib-based schemes. In genomic selection, accuracy of selection can be maximized by increasing the precision of the estimation of SNP effects and by maximizing the relationships between test sibs and candidate sibs. Another means of increasing the accuracy of the estimation of SNP effects is to create individuals in the test population with extreme genotypes. The latter approach was studied here with creation of double haploids and use of non-random mating designs.</p> <p>Methods</p> <p>Six alternative breeding schemes were simulated in which the design of the test population was varied: test sibs inherited maternal (<it>Mat</it>), paternal (<it>Pat</it>) or a mixture of maternal and paternal (<it>MatPat</it>) double haploid genomes or test sibs were obtained by maximum coancestry mating (<it>MaxC</it>), minimum coancestry mating (<it>MinC</it>), or random (<it>RAND</it>) mating. Three thousand test sibs and 3000 candidate sibs were genotyped. The test sibs were recorded for a trait that could not be measured on the candidates and were used to estimate SNP effects. Selection was done by truncation on genome-wide estimated breeding values and 100 individuals were selected as parents each generation, equally divided between both sexes.</p> <p>Results</p> <p>Results showed a 7 to 19% increase in selection accuracy and a 6 to 22% increase in genetic gain in the <it>MatPat</it> scheme compared to the <it>RAND</it> scheme. These increases were greater with lower heritabilities. Among all other scenarios, i.e. <it>Mat, Pat, MaxC</it>, and <it>MinC</it>, no substantial differences in selection accuracy and genetic gain were observed.</p> <p>Conclusions</p> <p>In conclusion, a test population designed with a mixture of paternal and maternal double haploids, i.e. the <it>MatPat</it> scheme, increases substantially the accuracy of selection and genetic gain. This will be particularly interesting for traits that cannot be recorded on the selection candidates and require the use of sib tests, such as disease resistance and meat quality.</p

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI

    Vitamin A deficiency during pregnancy of HIV infected and non-infected women in tropical settings of Northwest Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin A deficiency (VAD) is known to be a major public health problem among women of reproductive age in South East Asia and Africa. In Ethiopia, there are no studies conducted on serum vitamin A status of HIV-infected pregnant women. Therefore, the present study was aimed at determining the level of serum vitamin A and VAD among pregnant women with and without HIV infection in tropical settings of Northwest Ethiopia.</p> <p>Methods</p> <p>In this cross-sectional study, blood samples were collected from 423 pregnant women and from 55 healthy volunteers who visited the University of Gondar Hospital. Serum concentration of vitamin A was measured by high performance liquid chromatography.</p> <p>Results</p> <p>After controlling for total serum protein, albumin and demographic variables, the mean ± SD serum vitamin A in HIV seropositive pregnant women (0.96 ± 0.42 μmol/L) was significantly lower than that in pregnant women without HIV infection (1.10 ± 0.45 μmol/L, P < 0.05). Likewise, the level of serum vitamin A in HIV seropositive non-pregnant women (0.74 ± 0.39) was significantly lower than that in HIV negative non-pregnant women (1.18 ± 0.59 μmol/L, P < 0.004). VAD (serum retinol < 0.7 μmol/L) was observed in 18.4% and 17.7% of HIV infected and uninfected pregnant women, respectively. Forty six percent of non-pregnant women with HIV infection had VAD while only 28% controls were deficient for vitamin A (P = 0.002).</p> <p>Conclusion</p> <p>The present study shows that VAD is a major public health problem among pregnant women in the tropical settings of Northwest Ethiopia. Considering the possible implications of VAD during pregnancy, we recommend multivitamin (which has a lower level of vitamin A) supplementation in the care and management of pregnant women with or without HIV infection.</p

    Membrane Topology and Predicted RNA-Binding Function of the ‘Early Responsive to Dehydration (ERD4)’ Plant Protein

    Get PDF
    Functional annotation of uncharacterized genes is the main focus of computational methods in the post genomic era. These tools search for similarity between proteins on the premise that those sharing sequence or structural motifs usually perform related functions, and are thus particularly useful for membrane proteins. Early responsive to dehydration (ERD) genes are rapidly induced in response to dehydration stress in a variety of plant species. In the present work we characterized function of Brassica juncea ERD4 gene using computational approaches. The ERD4 protein of unknown function possesses ubiquitous DUF221 domain (residues 312–634) and is conserved in all plant species. We suggest that the protein is localized in chloroplast membrane with at least nine transmembrane helices. We detected a globular domain of 165 amino acid residues (183–347) in plant ERD4 proteins and expect this to be posited inside the chloroplast. The structural-functional annotation of the globular domain was arrived at using fold recognition methods, which suggested in its sequence presence of two tandem RNA-recognition motif (RRM) domains each folded into βαββαβ topology. The structure based sequence alignment with the known RNA-binding proteins revealed conservation of two non-canonical ribonucleoprotein sub-motifs in both the putative RNA-recognition domains of the ERD4 protein. The function of highly conserved ERD4 protein may thus be associated with its RNA-binding ability during the stress response. This is the first functional annotation of ERD4 family of proteins that can be useful in designing experiments to unravel crucial aspects of stress tolerance mechanism

    Intestinal parasitosis and shigellosis among diarrheal patients in Gondar teaching hospital, northwest Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diarrheal diseases are the major causes of morbidity and mortality in developing world. Understanding the etiologic agents of diarrheal diseases and their association with socio-demographic characteristics of patients would help to design better preventive measures. Thus, this study was aimed to determine the prevalence of intestinal parasites and enteropathogenic bacteria in diarrheic patients.</p> <p>Methods</p> <p>A cross-sectional study involving 384 consecutive diarrheal patients who visited Gondar teaching hospital, Gondar, Ethiopia from October 2006 to March 2007 was conducted. Stool specimens were collected and examined for intestinal parasites and enteropathogenic bacteria following standard parasitological and microbiological procedures.</p> <p><b><it>Results</it></b></p> <p>Intestinal parasites were diagnosed in 36.5% of the patients. The most frequently encountered protozoan parasite was <it>Entamoeba histolytica/dispar </it>(7.3%) followed by <it>Giardia lamblia </it>(5.0%), C<it>ryptosporidium parvum </it>(1.8%) and <it>Isospora belli </it>(1.3%). The dominant helminthic parasite identified was <it>Ascaris lumbricoides </it>(5.5%) followed by <it>Strongyloides stercoralis </it>and <it>Schistosoma mansoni </it>(3.1% each), hookworm infection (1.8%), and <it>Hymenolepis </it>species (1.3%). Multiple infections of intestinal parasites were also observed in 6.3% of the patients. Among the enteropathogenic bacteria <it>Shigella </it>and <it>Salmonella </it>species were isolated from 15.6% and 1.6%, respectively, of the patients. <it>Escherichia coli O57:H7 </it>was not found in any of the stool samples tested. Eighty eight percent and 83.3% of the <it>Shigella </it>and <it>Salmonella </it>isolates were resistant to one or more commonly used antibiotics, respectively.</p> <p>Intestinal parasitosis was higher in patients who live in rural area, in patients who were washing their hands after visiting toilet either irregularly with soap and without soap or not at all, in patients who used well and spring water for household consumption, and in patients who had nausea (<it>P </it>< 0.05). Statistically significant associations were also observed between Shigella infections and patients who were using well and spring water for household consumption, and patients who had dysentery and mucoid stool (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>The high prevalence of intestinal parasites and <it>Shigella </it>species in diarrheic patients calls for institution of appropriate public health intervention measures to reduce morbidity and mortality associated with these diseases. The rational use of antibiotics should also be practiced.</p

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
    corecore