12,979 research outputs found

    Spin and exchange coupling for Ti embedded in a surface dipolar network

    Get PDF
    We have studied the spin and exchange coupling of Ti atoms on a Cu2_2N/Cu(100) surface using density functional theory. We find that individual Ti have a spin of 1.0 (i.e., 2 Bohr Magneton) on the Cu2_2N/Cu(100) surface instead of spin-1/2 as found by Scanning Tunneling Microscope. We suggest an explanation for this difference, a two-stage Kondo effect, which can be verified by experiments. By calculating the exchange coupling for Ti dimers on the Cu2_2N/Cu(100) surface, we find that the exchange coupling across a `void' of 3.6\AA\ is antiferromagnetic, whereas indirect (superexchange) coupling through a N atom is ferromagnetic. We confirm the existence of superexchange interactions by varying the Ti-N angle in a model trimer calculation. For a square lattice of Ti on Cu2_2N/Cu(100), we find a novel spin striped phase

    Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis

    Get PDF
    Biomass deconstruction remains integral for enabling second‐generation biofuel production at scale. However, several steps necessary to achieve significant solubilization of biomass, notably harsh pretreatment conditions, impose economic barriers to commercialization. By employing hyperthermostable cellulase machinery, biomass deconstruction can be made more efficient, leading to milder pretreatment conditions and ultimately lower production costs. The hyperthermophilic bacterium Caldicellulosiruptor bescii produces extremely active hyperthermostable cellulases, including the hyperactive multifunctional cellulase CbCel9A/Cel48A. Recombinant CbCel9A/Cel48A components have been previously produced in Escherichia coli and integrated into synthetic hyperthermophilic designer cellulosome complexes. Since then, glycosylation has been shown to be vital for the high activity and stability of CbCel9A/Cel48A. Here, we studied the impact of glycosylation on a hyperthermostable designer cellulosome system in which two of the cellulosomal components, the scaffoldin and the GH9 domain of CbCel9A/Cel48A, were glycosylated as a consequence of employing Ca. bescii as an expression host. Inclusion of the glycosylated components yielded an active cellulosome system that exhibited long‐term stability at 75 °C. The resulting glycosylated designer cellulosomes showed significantly greater synergistic activity compared to the enzymatic components alone, as well as higher thermostability than the analogous nonglycosylated designer cellulosomes. These results indicate that glycosylation can be used as an essential engineering tool to improve the properties of designer cellulosomes. Additionally, Ca. bescii was shown to be an attractive candidate for production of glycosylated designer cellulosome components, which may further promote the viability of this bacterium both as a cellulase expression host and as a potential consolidated bioprocessing platform organism

    An invitation to grieve: reconsidering critical incident responses by support teams in the school setting

    Get PDF
    This paper proposes that consideration could be given to an invitational intervention rather than an expectational intervention when support personnel respond to a critical incident in schools. Intuitively many practitioners know that it is necessary for guidance/counselling personnel to intervene in schools in and following times of trauma. Most educational authorities in Australia have mandated the formulation of a critical incident intervention plan. This paper defines the term critical incident and then outlines current intervention processes, discussing the efficacy of debriefing interventions. Recent literature suggests that even though it is accepted that a planned intervention is necessary, there is scant evidence as to the effectiveness of debriefing interventions in stemming later symptoms of post traumatic stress disorder. The authors of this paper advocate for an expressive therapy intervention that is invitational rather than expectational, arguing that not all people respond to trauma in the same way and to expect that they will need to recall and retell what has happened is most likely a dangerous assumption. A model of invitation using Howard Gardner’s (1983) multiple intelligences is proposed so that students are invited to grieve and understand emotionally what is happening to them following a critical incident

    High-Resolution X-Ray Spectroscopy of the Accretion Disk Corona Source 4U 1822-37

    Full text link
    We present a preliminary analysis of the X-ray spectrum of the accretion disk corona source, 4U 1822-37, obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. We detect discrete emission lines from photoionized iron, silicon, magnesium, neon, and oxygen, as well as a bright iron fluorescence line. Phase-resolved spectroscopy suggests that the recombination emission comes from an X-ray illuminated bulge located at the predicted point of impact between the disk and the accretion stream. The fluorescence emission originates in an extended region on the disk that is illuminated by light scattered from the corona.Comment: 12 pages, 6 figures; Accepted for publication in ApJ Letter

    Phase diagram of a frustrated mixed-spin ladder with diagonal exchange bonds

    Full text link
    Using exact numerical diagonalization and the conformal field theory approach, we study the effect of magnetic frustrations due to diagonal exchange bonds in a system of two coupled mixed-spin (1,1/2)(1,{1/2}) Heisenberg chains. It is established that relatively moderate frustrations are able to destroy the ferrimagnetic state and to stabilize the critical spin-liquid phase typical for half-integer-spin antiferromagnetic Heisenberg chains. Both phases are separated by a narrow but finite region occupied by a critical partially-polarized ferromagnetic phase.Comment: 5 PRB pages, 7 eps figures, to appear in Phys. Rev.

    Magnetic Collimation in PNe

    Get PDF
    Recent studies have focused on the the role of initially weak toroidal magnetic fields embedded in a stellar wind as the agent for collimation in planetary nebulae. In these models the wind is assumed to be permeated by a helical magnetic field in which the poloidal component falls off faster than the toroidal component. The collimation only occurs after the wind is shocked at large distances from the stellar source. In this paper we re-examine assumptions built into this ``Magnetized Wind Blown Bubble'' (MWBB) model. We show that a self-consistent study of the model leads to a large parameter regime where the wind is self-collimated before the shock wave is encountered. We also explore the relation between winds in the MWBB model and those which are produced via magneto-centrifugal processes. We conclude that a more detailed examination of the role of self-collimation is needed in the context of PNe studies

    Where's the Doughnut? LBV bubbles and Aspherical Fast Winds

    Get PDF
    In this paper we address the issue of the origin of LBV bipolar bubbles. Previous studies have explained the shapes of LBV nebulae, such as η\eta Car, by invoking the interaction of an isotropic fast wind with a previously deposited, slow aspherical wind (a ``slow torus''). In this paper we focus on the opposite scenario where an aspherical fast wind expands into a previously deposited isotropic slow wind. Using high resolution hydrodynamic simulations, which include the effects of radiative cooling, we have completed a series of numerical experiments to test if and how aspherical fast winds effect wind blown bubble morphologies. Our experiments explore a variety of models for the latitudinal variations of fast wind flow parameters. The simulations demonstrate that aspherical fast winds can produce strongly bipolar outflows. In addition the properties of outflows recover some important aspects of LBV bubbles which the previous "slow torus" models can not.Comment: 23 pages, 6 figures, to appear the Astrophysical Journa

    Radio pulses from cosmic ray air showers - Boosted Coulomb and Cherenkov fields

    Full text link
    High-energy cosmic rays passing through the Earth's atmosphere produce extensive showers whose charges emit radio frequency pulses. Despite the low density of the Earth's atmosphere, this emission should be affected by the air refractive index because the bulk of the shower particles move roughly at the speed of radio waves, so that the retarded altitude of emission, the relativistic boost and the emission pattern are modified. We consider in this paper the contribution of the boosted Coulomb and the Cherenkov fields and calculate analytically the spectrum using a very simplified model in order to highlight the main properties. We find that typically the lower half of the shower charge energy distribution produces a boosted Coulomb field, of amplitude comparable to the levels measured and to those calculated previously for synchrotron emission. Higher energy particles produce instead a Cherenkov-like field, whose amplitude may be smaller because both the negative charge excess and the separation between charges of opposite signs are small at these energies.Comment: 10 figures - Accepted by Astronomy & Astrophysic

    Evidence of environmental strains on charge injection in silole based organic light emitting diodes

    Full text link
    Using d. functional theory (DFT) computations, the authors demonstrated a substantial skeletal relaxation when the structure of 2,5-bis-[4-anthracene-9-yl-phenyl]-1,1-dimethyl-3,4-diphenyl-silole (BAS) is optimized in the gas-phase comparing with the mol. structure detd. from monocrystal x-ray diffraction. The origin of such a relaxation is explained by a strong environmental strains induced by the presence of anthracene entities. Also, the estn. of the frontier orbital levels showed that this structural relaxation affects mainly the LUMO that is lowered of 190 meV in the gas phase. To check if these theor. findings would be confirmed for thin films of BAS, the authors turned to UV photoemission spectroscopy and/or inverse photoemission spectroscopy and electrooptical measurements. The study of the c.d. or voltage and luminance or voltage characteristics of an ITO/PEDOT/BAS/Au device clearly demonstrated a very unusual temp.-dependent behavior. Using a thermally assisted tunnel transfer model, this behavior likely originated from the variation of the electronic affinity of the silole deriv. with the temp. The thermal agitation relaxes the mol. strains in thin films as it is shown when passing from the cryst. to the gas phase. The relaxation of the intramol. thus induces an increase of the electronic affinity and, as a consequence, the more efficient electron injection in org. light-emitting diodes
    corecore