136 research outputs found

    Bioluminescence

    Full text link
    © 2016 Elsevier Ltd Kahle and Umbers introduce the ways by which organisms emit light though chemical reactions

    Molecular Characterization of Cold Adaptation of Membrane Proteins in the Vibrionaceae Core-Genome

    Get PDF
    Cold-adaptation strategies have been studied in multiple psychrophilic organisms, especially for psychrophilic enzymes. Decreased enzyme activity caused by low temperatures as well as a higher viscosity of the aqueous environment require certain adaptations to the metabolic machinery of the cell. In addition to this, low temperature has deleterious effects on the lipid bilayer of bacterial membranes and therefore might also affect the embedded membrane proteins. Little is known about the adaptation of membrane proteins to stresses of the cold. In this study we investigate a set of 66 membrane proteins from the core genome of the bacterial family Vibrionaceae to identify general characteristics that discern psychrophilic and mesophilic membrane proteins. Bioinformatical and statistical methods were used to analyze the alignments of the three temperature groups mesophilic, intermediate and psychrophilic. Surprisingly, our results show little or no adaptation to low temperature for those parts of the proteins that are predicted to be inside the membrane. However, changes in amino acid composition and hydrophobicity are found for complete sequences and sequence parts outside the lipid bilayer. Among others, the results presented here indicate a preference for helix-breaking and destabilizing amino acids Ile, Asp and Thr and an avoidance of the helix-forming amino acid Ala in the amino acid composition of psychrophilic membrane proteins. Furthermore, we identified a lower overall hydrophobicity of psychrophilic membrane proteins in comparison to their mesophilic homologs. These results support the stability-flexibility hypothesis and link the cold-adaptation strategies of membrane proteins to those of loop regions of psychrophilic enzymes. © 2012 Kahlke, Thorvaldsen

    Vibrionaceae core, shell and cloud genes are non-randomly distributed on Chr 1: An hypothesis that links the genomic location of genes with their intracellular placement.

    Get PDF
    BackgroundThe genome of Vibrionaceae bacteria, which consists of two circular chromosomes, is replicated in a highly ordered fashion. In fast-growing bacteria, multifork replication results in higher gene copy numbers and increased expression of genes located close to the origin of replication of Chr 1 (ori1). This is believed to be a growth optimization strategy to satisfy the high demand of essential growth factors during fast growth. The relationship between ori1-proximate growth-related genes and gene expression during fast growth has been investigated by many researchers. However, it remains unclear which other gene categories that are present close to ori1 and if expression of all ori1-proximate genes is increased during fast growth, or if expression is selectively elevated for certain gene categories.ResultsWe calculated the pangenome of all complete genomes from the Vibrionaceae family and mapped the four pangene categories, core, softcore, shell and cloud, to their chromosomal positions. This revealed that core and softcore genes were found heavily biased towards ori1, while shell genes were overrepresented at the opposite part of Chr 1 (i.e., close to ter1). RNA-seq of Aliivibrio salmonicida and Vibrio natriegens showed global gene expression patterns that consistently correlated with chromosomal distance to ori1. Despite a biased gene distribution pattern, all pangene categories contributed to a skewed expression pattern at fast-growing conditions, whereas at slow-growing conditions, softcore, shell and cloud genes were responsible for elevated expression.ConclusionThe pangene categories were non-randomly organized on Chr 1, with an overrepresentation of core and softcore genes around ori1, and overrepresentation of shell and cloud genes around ter1. Furthermore, we mapped our gene distribution data on to the intracellular positioning of chromatin described for V. cholerae, and found that core/softcore and shell/cloud genes appear enriched at two spatially separated intracellular regions. Based on these observations, we hypothesize that there is a link between the genomic location of genes and their cellular placement

    Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium

    Full text link
    © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd Dinoflagellates of the genus Symbiodinium underpin the survival and ecological success of corals. The use of cultured strains has been particularly important to disentangle the complex life history of Symbiodinium and their contribution to coral host physiology. However, these cultures typically harbour abundant bacterial communities which likely play important, but currently unknown, roles in Symbiodinium biology. We characterized the bacterial communities living in association with a wide phylogenetic diversity of Symbiodinium cultures (18 types spanning 5 clades) to define the core Symbiodinium microbiome. Similar to other systems, bacteria were nearly two orders of magnitude more numerically abundant than Symbiodinium cells and we identified three operational taxonomic units (OTUs) which were present in all cultures. These represented the α-proteobacterium Labrenzia and the γ-proteobacteria Marinobacter and Chromatiaceae. Based on the abundance and functional potential of bacteria harboured in these cultures, their contribution to Symbiodinium physiology can no longer be ignored

    Corrigendum: Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome

    Full text link
    [This corrects the article DOI: 10.3389/fmicb.2019.01011.]

    The microbiome of the cosmopolitan diatom leptocylindrus reveals significant spatial and temporal variability

    Get PDF
    Copyright © 2018 Ajani, Kahlke, Siboni, Carney, Murray and Seymour. The ecological interactions between phytoplankton and marine bacteria have important implications for the productivity and biogeochemistry of ocean ecosystems. In this study we characterized the microbial assemblages associated with multiple isolates of the ecologically important diatom Leptocylindrus using amplicon sequencing of the 16S rRNA gene, to examine levels of conservation of the microbiome across closely related species or strains. We also assessed if the microbiome structure of a given diatom strain was dependent on the location from which it was isolated and if the microbiome of cultured isolates significantly changed overtime from the seawater in which they were isolated. The bacterial assemblages from 36 strains belonging to three species (Leptocylindrus danicus, Leptocylindrus convexus, and Leptocylindrus aporus) isolated from six locations spanning > 1000 km of south east Australian coastline over 1 year, were dominated by the Rhodobacteraceae (∼60%) and the Flavobacteriaceae (∼10%). Across all strains, only one 'core OTU' (Roseovarius sp.) was identified across all samples. We observed no significant differences in bacterial community composition between diatom species. Significant differences in microbiome structure were, however, observed between diatom strains collected at different sampling times and from differing locations, albeit these two factors were coupled. Moreover, while bacterial communities under domestication varied from the seawater in which they were isolated, they remained specific to the location/month of origin, i.e., different regions and time points harbored distinct bacterial communities. Our study delivers new knowledge in relation to diatom-bacterial associations, revealing that the location/time from which a diatom is isolated plays an important role in shaping its microbiome

    Trial by phylogenetics - Evaluating the Multi-Species Coalescent for phylogenetic inference on taxa with high levels of paralogy (Gonyaulacales, Dinophyceae)

    Full text link
    ABSTRACT From publicly available next-gen sequencing datasets of non-model organisms, such as marine protists, arise opportunities to explore their evolutionary relationships. In this study we explored the effects that dataset and model selection have on the phylogenetic inference of the Gonyaulacales, single celled marine algae of the phylum Dinoflagellata with genomes that show extensive paralogy. We developed a method for identifying and extracting single copy genes from RNA-seq libraries and compared phylogenies inferred from these single copy genes with those inferred from commonly used genetic markers and phylogenetic methods. Comparison of two datasets and three different phylogenetic models showed that exclusive use of ribosomal DNA sequences, maximum likelihood and gene concatenation showed very different results to that obtained with the multi-species coalescent. The multi-species coalescent has recently been recognized as being robust to the inclusion of paralogs, including hidden paralogs present in single copy gene sets (pseudoorthologs). Comparisons of model fit strongly favored the multi-species coalescent for these data, over a concatenated alignment (single tree) model. Our findings suggest that the multi-species coalescent (inferred either via Maximum Likelihood or Bayesian Inference) should be considered for future phylogenetic studies of organisms where accurate selection of orthologs is difficult

    A New High Throughput Sequencing Assay for Characterizing the Diversity of Natural Vibrio Communities and Its Application to a Pacific Oyster Mortality Event

    Full text link
    © Copyright © 2019 King, Siboni, Kahlke, Green, Labbate and Seymour. The Vibrio genus is notable for including several pathogens of marine animals and humans, yet characterization of Vibrio diversity using routine 16S rRNA sequencing methods is often constrained by poor resolution beyond the genus level. Here, a new high throughput sequencing approach targeting the heat shock protein (hsp60) as a phylogenetic marker was developed to more precisely discriminate members of the Vibrio genus in environmental samples. The utility of this new assay was tested using mock communities constructed from known dilutions of Vibrio isolates. Relative to standard and Vibrio-specific 16S rRNA sequencing assays, the hsp60 assay delivered high levels of fidelity with the mock community composition at the species level, including discrimination of species within the Vibrio harveyi clade. This assay was subsequently applied to characterize Vibrio community composition in seawater and delivered substantially improved taxonomic resolution of Vibrio species compared to 16S rRNA analysis. Finally, this assay was applied to examine patterns in the Vibrio community within oysters during a Pacific oyster mortality event. In these oysters, the hsp60 assay identified species-level Vibrio community shifts prior to disease onset, pinpointing V. harveyi as a putative pathogen. Given that shifts in the Vibrio community can precede, cause, and follow disease onset in numerous marine organisms, there is a need for an accurate high throughput assay for defining Vibrio community composition in natural samples. This Vibrio-centric hsp60 sequencing assay offers the potential for precise high throughput characterization of Vibrio diversity, providing an enhanced platform for dissecting Vibrio dynamics in the environment

    Genome sequencing as a new window into the microbial community of membrane bioreactors – A critical review

    Full text link
    © 2019 Elsevier B.V. Recent developed sequencing techniques have resulted in a new and unprecedented way to study biological wastewater treatment, in which most organisms are uncultivable. This review provides (i) an insight on state-of-the-art sequencing techniques and their limitations; (ii) a critical assessment of the microbial community in biological reactor and biofouling layer in a membrane bioreactor (MBR). The data from high-throughput sequencing has been used to infer microbial growth conditions and metabolisms of microorganisms present in MBRs at the time of sampling. These data shed new insight to two fundamental questions about a microbial community in the MBR process namely the microbial composition (who are they?) and the functions of each specific microbial assemblage (what are their function?). The results to date also highlight the complexity of the microbial community growing on MBRs. Environmental conditions are dynamic and diverse, and can influence the diversity and structural dynamics of any given microbial community for wastewater treatment. The benefits of understanding the structure of microbial communities on three major aspects of the MBR process (i.e. nutrient removal, biofouling control, and micropollutant removal) were symmetrically delineated. This review also indicates that the deployment of microbial community analysis for a practical engineering context, in terms of process design and system optimization, can be further realized

    Mass coral bleaching of P. versipora in Sydney Harbour driven by the 2015–2016 heatwave

    Full text link
    © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. High-latitude coral communities are distinct from their tropical counterparts, and how they respond to recent heat wave events that have decimated tropical reefs remains unknown. In Australia, the 2016 El Niño resulted in the largest global mass coral bleaching event to date, reaching as far south as Sydney Harbour (~ 34°S). Coral bleaching was observed for the first time (affecting ca., 60% of all corals) as sea surface temperatures in Sydney Harbour remained > 2 °C above the long-term mean summer maxima, enabling us to examine whether high-latitude corals bleached in a manner described for tropical corals. Responses of the geographically cosmopolitan Plesiastrea versipora and southerly restricted Coscinaraea mcneilli were contrasted across two harbour sites, both in situ and among samples-maintained ex situ in aquaria continually supplied with Sydney Harbour seawater. While both coral taxa hosted the same species of microalgal endosymbiont (Breviolum spp; formerly clade B), only P. versipora bleached both in situ and ex situ via pronounced losses of endosymbiont cells. Both species displayed very different metabolic responses (growth, photosynthesis, respiration and calcification) and bleaching susceptibilities under elevated temperatures. Bacterial microbiome profiling, however, revealed a convergence of bacterial community composition across coral species throughout the bleaching. Corals species found in temperate regions, including the generalist P. versipora, will therefore likely be highly susceptible to future change as heat waves grow in frequency and severity unless their thermal thresholds increase. Our observations provide further evidence that high-latitude systems are susceptible to community reorganisation under climate change
    • …
    corecore