47 research outputs found

    Determinants of Deadwood-Inhabiting Fungal Communities in Temperate Forests: Molecular Evidence From a Large Scale Deadwood Decomposition Experiment

    Get PDF
    Despite the important role of wood-inhabiting fungi (WIF) in deadwood decomposition, our knowledge of the factors shaping the dynamics of their species richness and community composition is scarce. This is due to limitations regarding the resolution of classical methods used for characterizing WIF communities and to a lack of well-replicated long-term experiments with sufficient numbers of tree species. Here, we used a large scale experiment with logs of 11 tree species at an early stage of decomposition, distributed across three regions of Germany, to identify the factors shaping WIF community composition and Operational Taxonomic Unit (OTU) richness using next generation sequencing. We found that tree species identity was the most significant factor, corresponding to (P < 0.001) and explaining 10% (representing 48% of the explainable variance) of the overall WIF community composition. The next important group of variables were wood-physicochemical properties, of which wood pH was the only factor that consistently corresponded to WIF community composition. For overall WIF richness patterns, we found that approximately 20% of the total variance was explained by wood N content, location, tree species identity and wood density. It is noteworthy that the importance of determinants of WIF community composition and richness appeared to depend greatly on tree species group (broadleaved vs. coniferous) and it differed between the fungal phyla Ascomycota and Basidiomycota

    Decomposition dynamics of coarse woody debris of three important central European tree species

    No full text
    Background Coarse woody debris (CWD) is an important element of forest structure that needs to be considered when managing forests for biodiversity, carbon storage or bioenergy. To manage it effectively, dynamics of CWD decomposition should be known. Methods Using a chronosequence approach, we assessed the decomposition rates of downed CWD of Fagus sylvatica, Picea abies and Pinus sylvestris, which was sampled from three different years of tree fall and three different initial diameter classes (>10 – ≤ 20 cm, >20 – ≤40 cm, >40 cm). Samples originating from wind throws in 1999 were collected along a temperature and precipitation gradient. Based on the decay class and associated wood densities, log volumes were converted into CWD mass and C content. Log fragmentation was assessed over one year for log segments of intermediate diameters (>20 – 40 cm) after 8 and 18 years of decomposition. Results Significantly higher decomposition constants (k) were found in logs of F. sylvatica (0.054 year −1 ) than in P. abies (0.033 year −1 ) and P. sylvestris (0.032 year −1 ). However, mass loss of P. sylvestris occurred mainly in sapwood and hence k for the whole wood may be overestimated. Decomposition rates generally decreased with increasing log diameter class except for smaller dimensions in P. abies. About 74 % of the variation in mass remaining could be explained by decomposition time (27 %), tree species (11 %), diameter (17 %), the interactive effects between tree species and diameter (4 %) as well as between decomposition time and tree species (3 %) and a random factor (site and tree; 9.5 %), whereas temperature explained only 2 %. Wood fragmentation may play a more important role than previously thought. Here, between 14 % and 30 % of the decomposition rates (for the first 18 years) were attributable to this process. Carbon (C) density (mgC · cm −3 ), which was initially highest for F. sylvatica, followed by P. sylvestris and P. abies, decreased with increasing decay stage to similar values for all species. Conclusions The apparent lack of climate effects on decomposition of logs in the field indicates that regional decomposition models for CWD may be developed on the basis of information on decomposition time, tree species and dimension only. These can then be used to predict C dynamics in CWD as input for C accounting models and for habitat management

    Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    No full text
    Unicellular saprobic fungi (yeasts) inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related) yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution

    Drivers of CO2 Emission Rates from Dead Wood Logs of 13 Tree Species in the Initial Decomposition Phase

    No full text
    Large dead wood is an important structural component of forest ecosystems and a main component of forest carbon cycles. CO2 emissions from dead wood can be used as a proxy for actual decomposition rates. The main drivers of CO2 emission rates for dead wood of temperate European tree species are largely unknown. We applied a novel, closed chamber measurement technique to 360 dead wood logs of 13 important tree species in three regions in Germany. We found that tree species identity was with 71% independent contribution to the model (R2 = 0.62) the most important driver of volume-based CO2 emission rates, with angiosperms having on average higher rates than conifers. Wood temperature and fungal species richness had a positive effect on CO2 emission rates, whereas wood density had a negative effect. This is the first time that positive fungal species richness—wood decomposition relationship in temperate forests was shown. Certain fungal species were associated with high or low CO2 emission rates. In addition, as indicated by separate models for each tree species, forest management intensity, study region, and the water content as well as C and N concentration of dead wood influenced CO2 emission rates

    First insight into dead wood protistan diversity: a molecular sampling of bright-spored Myxomycetes (Amoebozoa, slime-moulds) in decaying beech logs

    No full text
    Decaying wood hosts a large diversity of seldom investigated protists. Environmental sequencing offers novel insights into communities, but has rarely been applied to saproxylic protists. We investigated the diversity of bright-spored wood-inhabiting Myxomycetes by environmental sequencing. Myxomycetes have a complex life cycle culminating in the formation of mainly macroscopic fruiting bodies, highly variable in shape and colour that are often found on decaying logs. Our hypothesis was that diversity of bright-spored Myxomycetes would increase with decay. DNA was extracted from wood chips collected from 17 beech logs of varying decay stages from the Hainich-Dun region in Central Germany. We obtained 260 partial small subunit ribosomal RNA gene sequences of bright-spored Myxomycetes that were assembled into 29 OTUs, of which 65% were less than 98% similar to those in the existing database. The OTU richness revealed by molecular analysis surpassed that of a parallel inventory of fruiting bodies. We tested several environmental variables and identified pH, rather than decay stage, as the main structuring factor of myxomycete distribution

    Temporal Changes in Randomness of Bird Communities across Central Europe

    Get PDF
    Many studies have examined whether communities are structured by random or deterministic processes, and both are likely to play a role, but relatively few studies have attempted to quantify the degree of randomness in species composition. We quantified, for the first time, the degree of randomness in forest bird communities based on an analysis of spatial autocorrelation in three regions of Germany. The compositional dissimilarity between pairs of forest patches was regressed against the distance between them. We then calculated the y-intercept of the curve, i.e. the ‘nugget’, which represents the compositional dissimilarity at zero spatial distance. We therefore assume, following similar work on plant communities, that this represents the degree of randomness in species composition. We then analysed how the degree of randomness in community composition varied over time and with forest management intensity, which we expected to reduce the importance of random processes by increasing the strength of environmental drivers. We found that a high portion of the bird community composition could be explained by chance (overall mean of 0.63), implying that most of the variation in local bird community composition is driven by stochastic processes. Forest management intensity did not consistently affect the mean degree of randomness in community composition, perhaps because the bird communities were relatively insensitive to management intensity. We found a high temporal variation in the degree of randomness, which may indicate temporal variation in assembly processes and in the importance of key environmental drivers. We conclude that the degree of randomness in community composition should be considered in bird community studies, and the high values we find may indicate that bird community composition is relatively hard to predict at the regional scale

    Data from: Effects of management on aquatic tree-hole communities in temperate forests are mediated by detritus amount and water chemistry

    No full text
    1. Arthropod communities in water-filled tree-holes may be sensitive to impacts of forest management, for example via changes in environmental conditions such as resource input. 2. We hypothesized that increasing forest management intensity negatively affects arthropod abundance and richness and shifts community composition and trophic structure of tree-hole communities. We predicted that this shift is caused by reduced habitat and resource availability at the forest stand scale as well as reduced tree-hole size, detritus amount and changed water chemistry at the tree-hole scale. 3. We mapped 910 water-filled tree-holes in two regions in Germany and studied 199 tree-hole inhabiting arthropod communities. 4. We found that increasing forest management intensity indeed significantly reduced arthropod abundance and richness in water-filled tree-holes. The most important indirect effects of management intensity on tree-hole community structure were the reduced amounts of detritus for the tree-hole inhabiting organisms and changed water chemistry at the tree-hole scale, both of which seem to act as a habitat filter. Although habitat availability at the forest stand scale decreased with increasing management intensity, this unexpectedly increased local arthropod abundance in individual tree-holes. However, regional species richness in tree-holes significantly decreased with increasing management intensity, most likely due to decreased habitat diversity. We did not find that the management-driven increase in plant diversity at the forest stand scale affected communities of individual tree-holes, for example via resource availability for adults. 5. Our results suggest that management of temperate forests has to target a number of factors at different scales to conserve diverse arthropod communities in water-filled tree holes
    corecore