648 research outputs found
Inclusive Particle Spectra at RHIC
A simulation is performed of the recently reported data from PHOBOS at
energies of 56 and 130 A GeV using the relativistic heavy ion cascade LUCIFER
which had previously given a good description of the NA49 inclusive spectra at
E=17.2 A GeV. The results compare well with these early measurements at RHIC.Comment: 4 pages, 2 figure
Suppression of High Transverse Momentum Spectra in Au+Au Collisions at RHIC
Au+Au, A GeV measurements at RHIC, obtained with the PHENIX,
STAR, PHOBOS and BRAHMS detectors, have all indicated a suppression of neutral
pion production, relative to an appropriately normalized NN level. For central
collisions and vanishing pseudo-rapidity these experiments exhibit suppression
in charged meson production, especially at medium to large transverse momenta.
In the PHENIX experiment similar behavior has been reported for
spectra.
In a recent work on the simpler D+Au interaction, to be considered perhaps as
a tune-up for Au+Au, we reported on a pre-hadronic cascade mechanism which
explains the mixed observation of moderately reduced suppression at
higher pseudo-rapidity as well as the Cronin enhancement at mid-rapidity. Here
we present the extension of this work to the more massive ion-ion collisions.
Our major thesis is that much of the suppression is generated in a late stage
cascade of colourless pre-hadrons produced after an initial short-lived
coloured phase. We present a pQCD argument to justify this approach and to
estimate the time duration of this initial phase. Of essential
importance is the brevity in time of the coloured phase existence relative to
that of the strongly interacting pre-hadron phase. The split into two phases is
of course not sharp in time, but adequate for treating the suppression of
moderate and high mesons.Comment: 19 pages, 10 figure
J/Psi Suppression in Heavy Ion Collisions at the CERN SPS
We reexamine the production of J/Psi and other charmonium states for a
variety of target-projectile choices at the SPS. For this study we use a newly
constructed cascade code LUCIFER II, which yields acceptable descriptions of
both hard and soft processes, specifically Drell-Yan and hidden charm
production, and soft energy loss and meson production, at the SPS. Glauber
calculations of other authors are redone, and compared directly to the cascade
results. The modeling of the charmonium states differs from that of earlier
workers in its unified treatment of the hidden charm meson spectrum, which is
introduced from the outset as a set of coupled states. The result is a
description of the NA38 and NA50 data in terms of a conventional hadronic
picture. The apparently anomalous suppression found in the most massive Pb+Pb
system arises from three sources: destruction in the initial nucleon-nucleon
cascade, use of coupled channels to exploit the larger breakup in the less
bound Chi and Psi' states, and comover interaction in the final low energy
phase.Comment: 36 pages (15 figures
Axially symmetric multi-baryon solutions and their quantization in the chiral quark soliton model
In this paper, we study axially symmetric solutions with in the
chiral quark soliton model.In the background of axially symmetric chiral
fields, the quark eigenstates and profile functions of the chiral fields are
computed self-consistently. The resultant quark bound spectrum are doubly
degenerate due to the symmetry of the chiral field. Upon quantization, various
observable spectra of the chiral solitons are obtained. Taking account of the
Finkelstein-Rubinstein constraints, we show that our results exactly coincide
with the physical observations for B=2 and 4 while B=3 and 5 do not.Comment: 19 pages, 11 figures, 5 table
B=3 Tetrahedrally Symmetric Solitons in the Chiral Quark Soliton Model
In this paper, B=3 soliton solutions with tetrahedral symmetry are obtained
numerically in the chiral quark soliton model using the rational map ansatz.
The solution exhibits a triply degenerate bound spectrum of the quark orbits in
the background of tetrahedrally symmetric pion field configuration. The
corresponding baryon density is tetrahedral in shape. Our numerical technique
is independent on the baryon number and its application to is
straightforward.Comment: 4 pages, 3 figure
Self-Consistent Pushing and Cranking Corrections to the Meson Fields of the Chiral Quark-Loop Soliton
We study translational and spin-isospin symmetry restoration for the
two-flavor chiral quark-loop soliton. Instead of a static soliton at rest we
consider a boosted and rotating hedgehog soliton. Corrected classical meson
fields are obtained by minimizing a corrected energy functional which has been
derived by semi-classical methods ('variation after projection'). We evaluate
corrected meson fields in the region 300 MeV \le M \le 600 MeV of constituent
quark masses M and compare them with the uncorrected fields. We study the
effect of the corrections on various expectation values of nuclear observables
such as the root-mean square radius, the axial-vector coupling constant,
magnetic moments and the delta-nucleon mass splitting.Comment: 19 pages, LaTeX, 7 postscript figures included using 'psfig.sty', to
appear in Int.J.Mod.Phys.
Searching for Quantum Solitons in a 3+1 Dimensional Chiral Yukawa Model
We search for static solitons stabilized by heavy fermions in a 3+1
dimensional Yukawa model. We compute the renormalized energy functional,
including the exact one-loop quantum corrections, and perform a variational
search for configurations that minimize the energy for a fixed fermion number.
We compute the quantum corrections using a phase shift parameterization, in
which we renormalize by identifying orders of the Born series with
corresponding Feynman diagrams. For higher-order terms in the Born series, we
develop a simplified calculational method. When applicable, we use the
derivative expansion to check our results. We observe marginally bound
configurations at large Yukawa coupling, and discuss their interpretation as
soliton solutions subject to general limitations of the model.Comment: 27 pp., 7 EPS files; email correspondence to [email protected]
Electromagnetic Form Factors of the SU(3) Octet Baryons in the semibosonized SU(3) Nambu-Jona-Lasinio Model
The electromagnetic form factors of the SU(3) octet baryons are investigated
in the semibosonized SU(3) Nambu--Jona-Lasinio model (chiral quark-soliton
model). The rotational and strange quark mass corrections in linear
order are taken into account. The electromagnetic charge radii of the nucleon
and magnetic moments are also evaluated. It turns out that the model is in a
remarkable good agreement with the experimental data.Comment: RevTex is used. 37 pages. The final version to appear in Phys. Rev.
D. 13 figures are include
- …