447 research outputs found
Anticorrelation between Ion Acceleration and Nonlinear Coherent Structures from Laser-Underdense Plasma Interaction
In laser-plasma experiments, we observed that ion acceleration from the
Coulomb explosion of the plasma channel bored by the laser, is prevented when
multiple plasma instabilities such as filamentation and hosing, and nonlinear
coherent structures (vortices/post-solitons) appear in the wake of an
ultrashort laser pulse. The tailoring of the longitudinal plasma density ramp
allows us to control the onset of these insabilities. We deduced that the laser
pulse is depleted into these structures in our conditions, when a plasma at
about 10% of the critical density exhibits a gradient on the order of 250
{\mu}m (gaussian fit), thus hindering the acceleration. A promising
experimental setup with a long pulse is demonstrated enabling the excitation of
an isolated coherent structure for polarimetric measurements and, in further
perspectives, parametric studies of ion plasma acceleration efficiency.Comment: 4 pages, 5 figure
Short Intense Laser Pulse Collapse in Near-Critical Plasma
It is observed that the interaction of an intense ultra-short laser pulse
with an overdense gas jet results in the pulse collapse and the deposition of a
significant part of energy in a small and well localized volume in the rising
part of the gas jet, where the electrons are efficiently accelerated and
heated. A collisionless plasma expansion over 150 microns at a sub-relativistic
velocity (~c/3) has been optically monitored in time and space, and attributed
to the quasistatic field ionization of the gas associated to the hot electron
current. Numerical simulations in good agreement with the observations suggest
the acceleration in the collapse region of relativistic electrons, along with
the excitation of a sizeable magnetic dipole that sustains the electron current
over several picoseconds. Perspectives of ion beam generation at high
repetition rate directly from gas jets are discussed
Enhanced hard x-ray emission from microdroplet preplasma
We perform a comparative study of hard x-ray emission from femtosecond laser plasmas in 15 mu m methanol microdroplets and Perspex target. The hard x-ray yield from droplet plasmas is similar or equal to 68 times more than that obtained from solid plasmas at 2x10(15) W cm(-2). A 10 ns prepulse at about 5% of the main pulse appears to be essential for hard x-ray generation from droplets. Hot electron temperature of 36 keV is measured from the droplets at 8x10(14) W cm(-2), whereas a three times higher intensity is needed to obtain similar hot electron temperatures from Perspex plasmas. Particle-in-cell simulations with very long scale-length density profiles support experimental observations. (c) 2006 American Institute of Physics
Mapping giant magnetic fields around dense solid plasmas by high resolution magneto-optical microscopy
We investigate distribution of magnetic fields around dense solid plasmas
generated by intense p-polarized laser (~10^{16} W.cm^{-2}, 100 fs) irradiation
of magnetic tapes, using high sensitivity magneto optical microscopy. We
present evidence for giant axial magnetic fields and map out for the first time
the spatial distribution of these fields. By using the axial magnetic field
distribution as a diagnostic tool we uncover evidence for angular momentum
associated with the plasma. We believe this study holds significance for
investigating the process under which a magnetic material magnetizes or
demagnetizes under the influence of ultrashort intense laser pulses.Comment: 17 pages of text with 4 figure
VINYL: The VIrtual Neutron and x-raY Laboratory and its applications
Experiments conducted in large scientific research infrastructures, such as synchrotrons, free electron lasers and neutron sources become increasingly complex. Such experiments, often investigating complex physical systems, are usually performed under strict time limitations and may depend critically on experimental parameters. To prepare and analyze these complex experiments, a virtual laboratory which provides start-to-end simulation tools can help experimenters predict experimental results under real or close to real instrument conditions. As a part of the PaNOSC (Photon and Neutron Open Science Cloud) project, the VIrtual Neutron and x-raY Laboratory (VINYL) is designed to be a cloud service framework to implement start-to-end simulations for those scientific facilities. In this paper, we present an introduction of the virtual laboratory framework and discuss its applications to the design and optimization of experiment setups as well as the estimation of experimental artifacts in an X-ray experiment
Ion acceleration in underdense plasmas by ultra-short laser pulses
We report on the ion acceleration mechanisms that occur during the interaction of an intense and ultrashort laser pulse ( λ > μ I 2 1018 W cm−2 m2) with an underdense helium plasma produced from an ionized gas jet target. In this
unexplored regime, where the laser pulse duration is comparable to the inverse of the electron plasma frequency ωpe, reproducible non-thermal ion bunches have been measured in the radial direction. The two He ion charge states present energy distributions with cutoff energies between 150 and 200 keV, and a striking energy gap around 50 keV appearing consistently for all the shots in a
given density range. Fully electromagnetic particle-in-cell simulations explain the experimental behaviors. The acceleration results from a combination of target normal sheath acceleration and Coulomb explosion of a filament formed around the laser pulse propagation axi
- …