13 research outputs found

    Exploring HIV infection and susceptibility to measles among older children and adults in Malawi: a facility-based study

    Get PDF
    SummaryBackgroundHIV infection increases measles susceptibility in infants, but little is known about this relationship among older children and adults. We conducted a facility-based study to explore whether HIV status and/or CD4 count were associated with either measles seroprotection and/or measles antibody concentration.MethodsA convenience sample was recruited comprising HIV-infected patients presenting for follow-up care, and HIV-uninfected individuals presenting for HIV testing at Chiradzulu District Hospital, Malawi, from January to September 2012. We recorded age, sex, and reported measles vaccination and infection history. Blood samples were taken to determine the CD4 count and measles antibody concentration.ResultsOne thousand nine hundred and thirty-five participants were recruited (1434 HIV-infected and 501 HIV-uninfected). The majority of adults and approximately half the children were seroprotected against measles, with lower odds among HIV-infected children (adjusted odds ratio 0.27, 95% confidence interval 0.10–0.69; p=0.006), but not adults. Among HIV-infected participants, neither CD4 count (p=0.16) nor time on antiretroviral therapy (p=0.25) were associated with measles antibody concentration, while older age (p<0.001) and female sex (p<0.001) were independently associated with this measure.ConclusionsWe found no evidence that HIV infection contributes to the risk of measles infection among adults, but HIV-infected children (including at ages older than previously reported), were less likely to be seroprotected in this sample

    Simultaneous Detection of Major Drug Resistance Mutations in the Protease and Reverse Transcriptase Genes for HIV-1 Subtype C by Use of a Multiplex Allele-Specific Assay

    Get PDF
    High-throughput, sensitive, and cost-effective HIV drug resistance (HIVDR) detection assays are needed for large-scale monitoring of the emergence and transmission of HIVDR in resource-limited settings. Using suspension array technology, we have developed a multiplex allele-specific (MAS) assay that can simultaneously detect major HIVDR mutations at 20 loci. Forty-five allele-specific primers tagged with unique 24-base oligonucleotides at the 5′ end were designed to detect wild-type and mutant alleles at the 20 loci of HIV-1 subtype C. The MAS assay was first established and optimized with three plasmid templates (C-wt, C-mut1, and C-mut2) and then evaluated using 148 plasma specimens from HIV-1 subtype C-infected individuals. All the wild-type and mutant alleles were unequivocally distinguished with plasmid templates, and the limits of detection were 1.56% for K219Q and K219E, 3.13% for L76V, 6.25% for K65R, K70R, L74V, L100I, K103N, K103R, Q151M, Y181C, and I47V, and 12.5% for M41L, K101P, K101E, V106A, V106M, Y115F, M184V, Y188L, G190A, V32I, I47A, I84V, and L90M. Analyses of 148 plasma specimens revealed that the MAS assay gave 100% concordance with conventional sequencing at eight loci and >95% (range, 95.21% to 99.32%) concordance at the remaining 12 loci. The differences observed were caused mainly by 24 additional low-abundance alleles detected by the MAS assay. Ultradeep sequencing analysis confirmed 15 of the 16 low-abundance alleles. This multiplex, sensitive, and straightforward result-reporting assay represents a new efficient genotyping tool for HIVDR surveillance and monitoring

    Omicron B.1.1.529 variant infections associated with severe disease are uncommon in a COVID-19 under-vaccinated, high SARS-CoV-2 seroprevalence population in Malawi.

    Get PDF
    BACKGROUND: The B.1.1.529 (Omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the fourth COVID-19 pandemic wave across the southern African region, including Malawi. The seroprevalence of SARS-CoV-2 antibodies and their association with epidemiological trends of hospitalisations and deaths are needed to aid locally relevant public health policy decisions. METHODS: We conducted a population-based serosurvey from December 27, 2021 to January 17, 2022, in 7 districts across Malawi to determine the seroprevalence of SARS-CoV-2 antibodies. Serum samples were tested for antibodies against SARS-CoV-2 receptor binding domain using WANTAI SARS-CoV-2 Receptor Binding Domain total antibody commercial enzyme-linked immunosorbent assay (ELISA). We also evaluated COVID-19 epidemiologic trends in Malawi, including cases, hospitalisations and deaths from April 1, 2021 through April 30, 2022, collected using the routine national COVID-19 reporting system. A multivariable logistic regression model was developed to investigate the factors associated with SARS-CoV-2 seropositivity. FINDINGS: Serum samples were analysed from 4619 participants (57% female; 60% aged 18-50 years), of whom 878/3794 (23%) of vaccine eligible adults had received a single dose of any COVID-19 vaccine. The overall assay-adjusted seroprevalence was 83.7% (95% confidence interval (CI), 79.3%-93.4%). Seroprevalence was lowest among children <13 years of age (66%) and highest among adults 18-50 years of age (82%). Seroprevalence was higher among vaccinated compared to unvaccinated participants (1 dose, 94% vs. 77%, adjusted odds ratio 4.89 [95% CI, 3.43-7.22]; 2 doses, 97% vs. 77%, aOR 6.62 [95% CI, 4.14-11.3]). Urban residents were more likely to be seropositive than those from rural settings (91% vs. 78%, aOR 2.76 [95% CI, 2.16-3.55]). There was at least a two-fold reduction in the proportion of hospitalisations and deaths among the reported cases in the fourth wave compared to the third wave (hospitalisations, 10.7% (95% CI, 10.2-11.3) vs. 4.86% (95% CI, 4.52-5.23), p < 0.0001; deaths, 3.48% (95% CI, 3.18-3.81) vs. 1.15% (95% CI, 1.00-1.34), p < 0.0001). INTERPRETATION: We report reduction in proportion of hospitalisations and deaths from SARS-CoV-2 infections during the Omicron variant dominated wave in Malawi, in the context of high SARS-CoV-2 seroprevalence and low COVID-19 vaccination coverage. These findings suggest that COVID-19 vaccination policy in high seroprevalence settings may need to be amended from mass campaigns to targeted vaccination of reported at-risk populations. FUNDING: Supported by the Bill and Melinda Gates Foundation (INV-039481)

    Integrated Disease Surveillance and Response (IDSR) in Malawi: Implementation gaps and challenges for timely alert.

    No full text
    ObjectiveThe recent 2014 Ebola Virus Disease (EVD) outbreaks rang the bell to call upon global efforts to assist resource-constrained countries to strengthen public health surveillance system for early response. Malawi adopted the Integrated Disease Surveillance and Response (IDSR) strategy to develop its national surveillance system since 2002 and revised its guideline to fulfill the International Health Regulation (IHR) requirements in 2014. This study aimed to understand the state of IDSR implementation and differences between guideline and practice for future disease surveillance system strengthening.MethodsThis was a mixed-method research study. Quantitative data were to analyze completeness and timeliness of surveillance system performance from national District Health Information System 2 (DHIS2) during October 2014 to September 2016. Qualitative data were collected through interviews with 29 frontline health service providers from the selected district and 7 key informants of the IDSR system implementation and administration at district and national levels.FindingsThe current IDSR system showed relatively good completeness (73.1%) but poor timeliness (40.2%) of total expected monthly reports nationwide and zero weekly reports during the study period. Major implementation gaps were lack of weekly report and trainings. The challenges of IDSR implementation revealed through qualitative data included case identification, compiling reports for timely submission and inadequate resources.ConclusionsThe differences between IDSR technical guideline and actual practice were huge. The developing information technology infrastructure in Malawi and emerging mobile health (mHealth) technology can be opportunities for the country to overcome these challenges and improve surveillance system to have better timeliness for the outbreaks and unusual events detection

    Sub-national variation in measles vaccine coverage and outbreak risk: a case study from a 2010 outbreak in Malawi

    No full text
    Abstract Background Despite progress towards increasing global vaccination coverage, measles continues to be one of the leading, preventable causes of death among children worldwide. Whether and how to target sub-national areas for vaccination campaigns continues to remain a question. We analyzed three metrics for prioritizing target areas: vaccination coverage, susceptible birth cohort, and the effective reproductive ratio (RE) in the context of the 2010 measles epidemic in Malawi. Methods Using case-based surveillance data from the 2010 measles outbreak in Malawi, we estimated vaccination coverage from the proportion of cases reporting with a history of prior vaccination at the district and health facility catchment scale. Health facility catchments were defined as the set of locations closer to a given health facility than to any other. We combined these estimates with regional birth rates to estimate the size of the annual susceptible birth cohort. We also estimated the effective reproductive ratio, RE, at the health facility polygon scale based on the observed rate of exponential increase of the epidemic. We combined these estimates to identify spatial regions that would be of high priority for supplemental vaccination activities. Results The estimated vaccination coverage across all districts was 84%, but ranged from 61 to 99%. We found that 8 districts and 354 health facility catchments had estimated vaccination coverage below 80%. Areas that had highest birth cohort size were frequently large urban centers that had high vaccination coverage. The estimated RE ranged between 1 and 2.56. The ranking of districts and health facility catchments as priority areas varied depending on the measure used. Conclusions Each metric for prioritization may result in discrete target areas for vaccination campaigns; thus, there are tradeoffs to choosing one metric over another. However, in some cases, certain areas may be prioritized by all three metrics. These areas should be treated with particular concern. Furthermore, the spatial scale at which each metric is calculated impacts the resulting prioritization and should also be considered when prioritizing areas for vaccination campaigns. These methods may be used to allocate effort for prophylactic campaigns or to prioritize response for outbreak response vaccination

    Draft genomes of <i>Aeromonas caviae</i> from patients with cholera-like illness during the 2022-2023 cholera outbreak in Malawi.

    No full text
    Aeromonas caviae is an increasingly recognized etiological agent of acute gastroenteritis. Here, we report five draft genomes of A. caviae isolated from suspected cholera cases during the 2022-2023 cholera outbreak in Malawi
    corecore