51 research outputs found

    The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.

    Get PDF
    Automated semantic segmentation of multiple knee joint tissues is desirable to allow faster and more reliable analysis of large datasets and to enable further downstream processing e.g. automated diagnosis. In this work, we evaluate the use of conditional Generative Adversarial Networks (cGANs) as a robust and potentially improved method for semantic segmentation compared to other extensively used convolutional neural network, such as the U-Net. As cGANs have not yet been widely explored for semantic medical image segmentation, we analysed the effect of training with different objective functions and discriminator receptive field sizes on the segmentation performance of the cGAN. Additionally, we evaluated the possibility of using transfer learning to improve the segmentation accuracy. The networks were trained on i) the SKI10 dataset which comes from the MICCAI grand challenge "Segmentation of Knee Images 2010ā€³, ii) the OAI ZIB dataset containing femoral and tibial bone and cartilage segmentations of the Osteoarthritis Initiative cohort and iii) a small locally acquired dataset (Advanced MRI of Osteoarthritis (AMROA) study) consisting of 3D fat-saturated spoiled gradient recalled-echo knee MRIs with manual segmentations of the femoral, tibial and patellar bone and cartilage, as well as the cruciate ligaments and selected peri-articular muscles. The SĆørensen-Dice Similarity Coefficient (DSC), volumetric overlap error (VOE) and average surface distance (ASD) were calculated for segmentation performance evaluation. DSC ā‰„ 0.95 were achieved for all segmented bone structures, DSC ā‰„ 0.83 for cartilage and muscle tissues and DSC of ā‰ˆ0.66 were achieved for cruciate ligament segmentations with both cGAN and U-Net on the in-house AMROA dataset. Reducing the receptive field size of the cGAN discriminator network improved the networks segmentation performance and resulted in segmentation accuracies equivalent to those of the U-Net. Pretraining not only increased segmentation accuracy of a few knee joint tissues of the fine-tuned dataset, but also increased the network's capacity to preserve segmentation capabilities for the pretrained dataset. cGAN machine learning can generate automated semantic maps of multiple tissues within the knee joint which could increase the accuracy and efficiency for evaluating joint health.European Union's Horizon 2020 Framework Programme [grant number 761214] Addenbrookeā€™s Charitable Trust (ACT) National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre University of Cambridge Cambridge University Hospitals NHS Foundation Trust GSK VARSITY: PHD STUDENTSHIP Funder reference: 300003198

    Effectively Measuring Exercise-Related Variations in T1Ļ and T2 Relaxation Times of Healthy Articular Cartilage.

    Get PDF
    BACKGROUND: Determining the compositional response of articular cartilage to dynamic joint-loading using MRI may be a more sensitive assessment of cartilage status than conventional static imaging. However, distinguishing the effects of joint-loading vs. inherent measurement variability remains difficult, as the repeatability of these quantitative methods is often not assessed or reported. PURPOSE: To assess exercise-induced changes in femoral, tibial, and patellar articular cartilage composition and compare these against measurement repeatability. STUDY TYPE: Prospective observational study. POPULATION: Phantom and 19 healthy participants. FIELD STRENGTH/SEQUENCE: 3T; 3D fat-saturated spoiled gradient recalled-echo; T1Ļ - and T2 -prepared pseudosteady-state 3D fast spin echo. ASSESSMENT: The intrasessional repeatability of T1Ļ and T2 relaxation mapping, with and without knee repositioning between two successive measurements, was determined in 10 knees. T1Ļ and T2 relaxation mapping of nine knees was performed before and at multiple timepoints after a 5-minute repeated, joint-loading stepping activity. 3D surface models were created from patellar, femoral, and tibial articular cartilage. STATISTICAL TESTS: Repeatability was assessed using root-mean-squared-CV (RMS-CV). Using Bland-Altman analysis, thresholds defined as the smallest detectable difference (SDD) were determined from the repeatability data with knee repositioning. RESULTS: Without knee repositioning, both surface-averaged T1Ļ and T2 were very repeatable on all cartilage surfaces, with RMS-CVā€‰SDD) average exercise-induced in T1Ļ and T2 of femoral (-8.0% and -5.3%), lateral tibial (-6.9% and -5.9%), medial tibial (+5.8% and +2.9%), and patellar (-7.9% and +2.8%) cartilage were observed. DATA CONCLUSION: Joint-loading with a stepping activity resulted in T1Ļ and T2 changes above background measurement error. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1753-1764.GlaxoSmithKline National Institute of Health Research (NIHR) Cambridge Biomedical Research Centr

    Segmentation of knee MRI data with convolutional neural networks for semi-automated three-dimensional surface-based analysis of cartilage morphology and composition

    Get PDF
    Objective: To assess automatic segmentations for surface-based analysis of cartilage morphology and composition on knee magnetic resonance (MR) images. Methods: 2D and 3D U-Nets were trained on double echo steady state (DESS) images from the publicly available Osteoarthritis Initiative (OAI) dataset with femoral and tibial bone and cartilage segmentations provided by the Zuse Institute Berlin (ZIB). The U-Nets were used to perform automatic segmentation of femoral and tibial bone-cartilage structures (bone and cartilage segmentations combined into one structure) from the DESS images. T2-weighted images from the OAI dataset were registered to the DESS images and used for T2 map calculation. Using the 3D cartilage surface mapping (3D-CaSM) method, surface-based analysis of cartilage morphology (thickness) and composition (T2) was performed using both manual and network-generated segmentations from OAI ZIB testing images. Bland-Altman analyses were performed to evaluate the accuracy of the extracted cartilage thickness and T2 measurements from both U-Nets compared to manual segmentations. Results: Bland-Altman analysis showed a mean bias [95% limits of agreement] for femoral and tibial cartilage thickness measurements ranging between -0.12 to 0.33 [-0.28, 0.96] mm with 2D U-Net and 0.07 to 0.14 [-0.14, 0.39] mm with 3D U-Net. For T2, the mean bias [95% limits of agreement] ranged between -0.16 to 1.32 [-4.71, 4.83] ms with 2D U-Net and -0.05 to 0.46 [-2.47, 3.39] ms with 3D U-Net. Conclusions: While both 2D and 3D U-Nets exemplified the time-efficiency benefit of using deep learning methods for generating the required segmentations, segmentations from 3D U-Nets demonstrated higher accuracy in the extracted thickness and T2 features using 3D-CaSM compared to the segmentations from 2D U-Nets

    Quantifying normal human brain metabolism using hyperpolarized [1ā€“ 13 C]pyruvate and magnetic resonance imaging

    Get PDF
    Hyperpolarized 13 C Magnetic Resonance Imaging ( 13 C-MRI) provides a highly sensitive tool to probe tissue metabolism in vivo and has recently been translated into clinical studies. We report the cerebral metabolism of intravenously injected hyperpolarized [1ā€“ 13 C]pyruvate in the brain of healthy human volunteers for the first time. Dynamic acquisition of 13 C images demonstrated 13 C-labeling of both lactate and bicarbonate, catalyzed by cytosolic lactate dehydrogenase and mitochondrial pyruvate dehydrogenase respectively. This demonstrates that both enzymes can be probed in vivo in the presence of an intact blood-brain barrier: the measured apparent exchange rate constant (k PL ) for exchange of the hyperpolarized 13 C label between [1ā€“ 13 C]pyruvate and the endogenous lactate pool was 0.012 Ā± 0.006 s āˆ’1 and the apparent rate constant (k PB ) for the irreversible flux of [1ā€“ 13 C]pyruvate to [ 13 C]bicarbonate was 0.002 Ā± 0.002 s āˆ’1 . Imaging also revealed that [1ā€“ 13 C]pyruvate, [1ā€“ 13 C]lactate and [ 13 C]bicarbonate were significantly higher in gray matter compared to white matter. Imaging normal brain metabolism with hyperpolarized [1ā€“ 13 C]pyruvate and subsequent quantification, have important implications for interpreting pathological cerebral metabolism in future studies

    Dynamic contrast-enhanced MRI of synovitis in knee osteoarthritis: repeatability, discrimination and sensitivity to change in a prospective experimental study

    Get PDF
    Abstract: Objectives: Evaluate test-retest repeatability, ability to discriminate between osteoarthritic and healthy participants, and sensitivity to change over 6 months, of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) biomarkers in knee OA. Methods: Fourteen individuals aged 40ā€“60 with mild-moderate knee OA and 6 age-matched healthy volunteers (HV) underwent DCE-MRI at 3 T at baseline, 1 month and 6 months. Voxelwise pharmacokinetic modelling of dynamic data was used to calculate DCE-MRI biomarkers including Ktrans and IAUC60. Median DCE-MRI biomarker values were extracted for each participant at each study visit. Synovial segmentation was performed using both manual and semiautomatic methods with calculation of an additional biomarker, the volume of enhancing pannus (VEP). Test-retest repeatability was assessed using intraclass correlation coefficients (ICC). Smallest detectable differences (SDDs) were calculated from test-retest data. Discrimination between OA and HV was assessed via calculation of between-group standardised mean differences (SMD). Responsiveness was assessed via the number of OA participants with changes greater than the SDD at 6 months. Results: Ktrans demonstrated the best test-retest repeatability (Ktrans/IAUC60/VEP ICCs 0.90/0.84/0.40, SDDs as % of OA mean 33/71/76%), discrimination between OA and HV (SMDs 0.94/0.54/0.50) and responsiveness (5/1/1 out of 12 OA participants with 6-month change > SDD) when compared to IAUC60 and VEP. Biomarkers derived from semiautomatic segmentation outperformed those derived from manual segmentation across all domains. Conclusions: Ktrans demonstrated the best repeatability, discrimination and sensitivity to change suggesting that it is the optimal DCE-MRI biomarker for use in experimental medicine studies. Key Points: ā€¢ Dynamic contrast-enhanced MRI (DCE-MRI) provides quantitative measures of synovitis in knee osteoarthritis which may permit early assessment of efficacy in experimental medicine studies. ā€¢ This prospective observational study compared DCE-MRI biomarkers across domains relevant to experimental medicine: test-retest repeatability, discriminative validity and sensitivity to change. ā€¢ The DCE-MRI biomarker Ktransdemonstrated the best performance across all three domains, suggesting that it is the optimal biomarker for use in future interventional studies
    • ā€¦
    corecore