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The Optimisation of Deep Neural Networks for 1 

Segmenting Multiple Knee Joint Tissues from MRIs 2 

 3 

Abstract 4 

Automated semantic segmentation of multiple knee joint tissues is desirable to allow faster 5 

and more reliable analysis of large datasets and to enable further downstream processing e.g. 6 

automated diagnosis.  7 

 8 

In this work, we evaluate the use of conditional Generative Adversarial Networks (cGANs) 9 

as a robust and potentially improved method for semantic segmentation compared to other 10 

extensively used convolutional neural network, such as the U-Net. As cGANs have not yet 11 

been widely explored for semantic medical image segmentation, we analysed the effect of 12 

training with different objective functions and discriminator receptive field sizes on the 13 

segmentation performance of the cGAN. Additionally, we evaluated the possibility of using 14 

transfer learning to improve the segmentation accuracy. The networks were trained on i) the 15 

SKI10 dataset which comes from the MICCAI grand challenge “Segmentation of Knee 16 

Images 2010”, ii) the OAI ZIB dataset containing femoral and tibial bone and cartilage 17 

segmentations of the Osteoarthritis Initiative cohort and iii) a small locally acquired dataset 18 

(Advanced MRI of Osteoarthritis (AMROA) study) consisting of  3D fat-saturated spoiled 19 

gradient recalled-echo knee MRIs with manual segmentations of the femoral, tibial and 20 

patellar bone and cartilage, as well as the cruciate ligaments and selected peri-articular 21 

muscles. The Sørensen–Dice Similarity Coefficient (DSC), volumetric overlap error (VOE) 22 

and average surface distance (ASD) were calculated for segmentation performance 23 

evaluation. 24 

 25 

DSC ≥ 0.95 were achieved for all segmented bone structures, DSC ≥ 0.83 for cartilage and 26 

muscle tissues and DSC of ≈0.66 were achieved for cruciate ligament segmentations with 27 

both cGAN and U-Net on the in-house AMROA dataset. Reducing the receptive field size of 28 

the cGAN discriminator network improved the networks segmentation performance and 29 

resulted in segmentation accuracies equivalent to those of the U-Net. Pretraining not only 30 

increased segmentation accuracy of a few knee joint tissues of the fine-tuned dataset, but also 31 



increased the network’s capacity to preserve segmentation capabilities for the pretrained 1 

dataset. 2 

 3 

cGAN machine learning can generate automated semantic maps of multiple tissues within the 4 

knee joint which could increase the accuracy and efficiency for evaluating joint health. 5 

 6 

Key Words:   magnetic resonance imaging (MRI); musculoskeletal; image segmentation; 7 

convolutional neural network (CNN); generative adversarial network (GAN) 8 
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1. Introduction 1 

Osteoarthritis (OA) is a degenerative disease involving the entire synovial joint 2 

(Goldring et al., 2017; Hunter and Eckstein, 2009; Martel-Pelletier et al., 2016). 3 

Important risk factors for the development of OA include age, muscle weakness, 4 

abnormal joint loading due to joint malalignment or overloading (obesity, high impact 5 

sport), and injury to the menisci and ligaments (Ismail and Vincent, 2017; Lohmander et 6 

al., 2007; Martel-Pelletier et al., 2016). Distinctive hallmarks of OA include the 7 

progressive destruction of articular cartilage structure and alterations in the surrounding 8 

joint tissues, including bone, meniscus, ligament and peri-articular muscle. Magnetic 9 

Resonance Imaging (MRI) is a commonly used tool to evaluate clinical abnormalities of the 10 

knee (Blumenkrantz and Majumdar, 2016). Morphological changes due to OA are well 11 

demonstrated with MRI (Benhamou et al., 2001; Hunter et al., 2015; MacKay et al., 2018; 12 

Neogi et al., 2013; Wise et al., 2018). Tissue specific masks of the knee joint can be useful 13 

for the analysis of OA, especially as automated tools continue to be developed and validated 14 

(Bindernagel et al., 2011; Deniz et al., 2018; Lee et al., 2014; Liu et al., 2017; Ng et al., 2006; 15 

Patel and Singh, 2018; Seim et al., 2010; Shan et al., 2014; Shrivastava et al., 2014; Swanson 16 

et al., 2010; Xia et al., 2013; Zhou et al., 2016). 17 

 18 

For both clinical and research usage, a significant amount of time is spent manually 19 

segmenting images to designate tissue-specific regional masks, also known as regions-of-20 

interest (ROIs). Image masking remains a very significant challenge within medical imaging 21 

due to heterogeneity in organ appearance and disease progression and presentation. The 22 

segmentation of neighbouring soft tissues such as the cruciate ligaments, cartilages and 23 

muscles in the knee joint which have similar image intensities (and therefore poor contrast 24 

resolution) is an especially demanding task. ROIs can be generated through manual or semi-25 

manual delineation by a trained reader, or they may be generated automatically using signal 26 

thresholding (Swanson et al., 2010), shape (Bindernagel et al., 2011; Seim et al., 2010), atlas 27 

(Lee et al., 2014; Shan et al., 2014), or derive from region based (Ng et al., 2006; Patel and 28 

Singh, 2018; Shrivastava et al., 2014)  approaches, as well as with machine learning 29 

approaches (Deniz et al., 2018; Liu et al., 2017; Xia et al., 2013; Zhou et al., 2016). Machine 30 

learning methods include unsupervised learning, such as k-means clustering, which segments 31 

based on spatial clusters of similar signal intensities in an image  (Ng et al., 2006; Patel and 32 

Singh, 2018; Shrivastava et al., 2014), or supervised learning by training the algorithm on 33 



image masks that have been obtained from any previous masking technique (Deniz et al., 1 

2018; Liu et al., 2017; Xia et al., 2013; Zhou et al., 2016). The number of high-quality label 2 

maps for supervised learning is typically very small, and the performance of a machine 3 

learning network trained on a low number of data is limited due to the lack of heterogeneity 4 

of images presented during training. Transfer learning may be used to mitigate this by 5 

pretraining a network on a large dataset with different but related similarities to the actual 6 

task, followed by network refinement on the small dataset (Shie et al., 2015).      7 

 8 

Convolutional neural networks (CNNs), in particular U-Nets (Ronneberger et al., 2015), have 9 

demonstrated their capability to automate the segmentation of musculoskeletal MRIs (Liu et 10 

al., 2017; Norman et al., 2018). Nevertheless, a drawback of this approach with CNNs is that 11 

they usually use pixel-wise measures such as the absolute (L1) or square (L2) error loss 12 

which can be non-optimal for image data, and, in the case of L2, result in blurry boundaries 13 

(Pathak et al., 2016). In contrast, generative adversarial networks (GANs) (Goodfellow et al., 14 

2014) learn a similarity measure (feature-wise metric) that adapts to the training task by 15 

implementing two competing, or adversarial, neural networks. During adversarial training, 16 

one network focusses on image discrimination and guides a second network which focusses 17 

on image generation to create “real” images that have a data distribution indistinguishable 18 

from the training data distribution. The generator and discriminator are trained 19 

simultaneously and competitively in a mini-max game while convergence is achieved when 20 

the Nash equilibrium is reached, i.e. no network can improve through further training if one 21 

remains unchanged (Zhao et al., 2017).  22 

 23 

Conditional GANs (cGANs) modify the GAN approach to learn image-to-image mappings 24 

(Goodfellow et al., 2014; Isola et al., 2017). In comparison to traditional GANs that learn a 25 

mapping from random noise to a generated output, cGANs learn a mapping from an observed 26 

variable, for example an image to generate an output, such as a label map (Goodfellow et al., 27 

2014; Isola et al., 2017). cGANs have been used to produce image labels for neurological 28 

(Rezaei et al., 2017), cardiac (Dou et al., 2018), abdominal (Huo et al., 2018), respiratory 29 

(Chen et al., 2018) and musculoskeletal imaging (Liu, 2018, Gaj et al., 2019). (Liu, 2019) 30 

used unpaired image-to-image translation with a method called cycle-consistent generative 31 

adversarial network (CycleGAN) to perform semantic image segmentation of femorotibial 32 

cartilage and bone of the knee joint of unlabelled MRI datasets. The “pix2pix” framework is 33 

one cGAN approach that has demonstrated segmentation capability (Isola et al., 2017). 34 



Semantic segmentation with cGANs, particularly those combining U-Net generators and 1 

Markov Random Field discriminators (patch-based discriminators), is relatively unexplored. 2 

The method has previously been performed for semantic segmentation of the brain (Rezaei et 3 

al., 2017). In (Gaj et al., 2019), a cGAN was used for semantic segmentation of knee cartilage 4 

and meniscus but with an image-wise discriminator rather than a patch-wise discriminator. 5 

 6 

The aim of this study was to implement and evaluate a cGAN for automated semantic 7 

segmentation of multiple joint tissues from MR images: the femoral, tibial and patellar bones 8 

and cartilage surfaces; the cruciate ligaments; and two selective muscles, the medial vastus 9 

and gastrocnemius. Our essential contributions are summarised as followed: 10 

 11 

1. Implementation of a cGAN based on the “pix2pix” framework introduced by (Isola et 12 

al., 2017) using a U-Net generator and a patch-based discriminator for automatic 13 

segmentation of multiple knee joint tissues. As far as we know, cGANs have not 14 

previously been used for semantic segmentation of the patellar bone and cruciate 15 

ligaments, as well as muscles of the knee joint.    16 

 17 

2. Evaluating the segmentation performance of the cGAN with different objective 18 

functions by combining the cGAN loss with different pixel-wise error losses and 19 

modifying the weighting hyperparameter between the cGAN loss and pixel-wise 20 

error loss. 21 

 22 

3. Assessing the choice of the generator depth and discriminator receptive field size on 23 

the performance of the cGAN for multi-tissue segmentation. 24 

 25 

4. Quantitative comparison of the cGAN approach with the well-known U-Net 26 

approach. 27 

 28 

5. Exploring the use of transfer learning for improved segmentation performance of 29 

both cGAN and U-Net.  30 

 31 

 32 

 33 

 34 



2. Material and Methods 1 

2.1 Image datasets 2 

Three image datasets were used for network training and testing; the publicly available 3 

SKI10 and OAI ZIB datasets, consisting of 100 and 507 labelled knee MRs, respectively, and 4 

a locally acquired dataset of ten segmented knee MRs (Advanced MRI of Osteoarthritis 5 

(AMROA) study). 6 

 7 

2.1.1 SKI10 8 

The “Segmentation of Knee Images 2010” (SKI10) dataset (Heimann et al., 2010), consists of 9 

approximately 90% 1.5T and 10% 3.0T sagittal MR images using multiple system vendors – 10 

GE , Siemens, Philips, Toshiba, and Hitachi. The sequences were varied and included both 11 

gradient echo and spoiled gradient echo sequences, commonly with fat suppression.  The 12 

images were segmented on a slice-by-slice basis by experts from Biomet, Inc., initially 13 

through intensity thresholds and thereafter with manual editing. One hundred 3D image 14 

datasets of the SKI10 challenge were provided with semi-manual masks of femoral and tibial 15 

cartilage and bone. In our study, 70 datasets were used for network training and 30 for 16 

network testing.  17 

 18 

2.1.2 OAI ZIB 19 

The OAI ZIB dataset (Ambellan et al., 2019) is comprised of segmentations of femoral and 20 

tibial cartilage and bone of 507 MR imaging volumes from the publicly available 21 

Osteoarthritis Initiative dataset (“The Osteoarthritis Initiative,” n.d.). The MR images were 22 

acquired on Siemens 3T Trio systems using a 3D double echo steady state (DESS) sequence 23 

with water excitation. Outlines of femoral and tibial bone and cartilage were generated using 24 

a statistical shape model (Seim et al., 2010) with manual adjustments performed by experts at 25 

Zuse Institute Berlin. The OAI ZIB data covers all degrees of OA (KL 0 – 4), with more 26 

cases having severe OA (KL ≥ 3) (Ambellan et al., 2019). As with the SKI10 dataset, we split 27 

the dataset in 70% (355) for network training and 30% (152) for testing. 28 

 29 

2.13 AMROA 30 

The locally acquired participant cohort consisted of ten subjects: five healthy volunteers and 31 

five patients with mild-to-moderate OA.  The patients followed at least one subset of 32 



American College of Rheumatology criteria for OA and were recruited between April 2017 1 

to April 2018 (Table 1). The healthy volunteers were approximately matched to OA patients 2 

for age, sex, and body mass. Network training was performed on data from four subjects with 3 

OA and four healthy subjects. Two individuals (one with OA and one healthy) were used as a 4 

unique set for test measurements. The number of test individuals was chosen such that 5 

roughly 80% of the data could be used for training. Ethical approval was obtained from the 6 

National Research Ethics Service, and all subjects provided written informed consent before 7 

participation.  8 

 9 

The source images (Fig. 2A) for each subject were 3D fat-saturated spoiled gradient recalled-10 

echo (3D-FS SPGR) images and were acquired on a 3.0T MRI system (MR750, GE 11 

Healthcare, Waukesha, WI, USA) using an 8-channel transmit/receive knee coil (InVivo, 12 

Gainesville, FL, USA). The 3D-FS SPGR sequence parameters were: field-of-13 

view=150x128x136 mm3, matrix size=512x380x136 zero-fill interpolated to 512x512x136, 14 

voxel size=0.29x0.29x1.0 mm3, TR = 12.5 ms, TE = 2.4 ms, flip angle = 25°, coil 15 

acceleration factor (ASSET) = 2, partial Fourier phase encoding = 0.5 (half-NEX), bandwidth 16 

= ±11.9 kHz, with fat-suppression.  17 

 18 

Semi-manual segmented masks (Fig. 2A) of the patella, tibia, and femur bones as well as of 19 

their respective surrounding patellar, tibial and femoral cartilages (Fig. 2b) were created from 20 

the 3D-FS SPGR images by a musculoskeletal radiologist with 8 years’ experience, using the 21 

Stradwin software v5.4a (University of Cambridge Department of Engineering, Cambridge, 22 

UK, now freely available as ‘StradView’ at http://mi.eng.cam.ac.uk/Main/StradView/) 23 

(MacKay et al., 2020). Additionally, masks of the vastus medialis and medial head of 24 

gastrocnemius muscles were created. This semi-manual segmentation pipeline consists of 25 

sparse manual contour generation (every 2nd-5th sagittal image/2-5 mm) followed by 26 

automatic surface triangulation using the regularised marching tetrahedra method. Volume 27 

preserving surface smoothing allows creation of an accurate segmentation from relatively 28 

sparse manual contours (Treece et al., 1999). Manual segmentations of the anterior cruciate 29 

ligament (ACL) and posterior cruciate ligament (PCL) were created on the 3D-FS SPGR 30 

images using ITK SNAP (Yushkevich et al., 2006) by a radiologist with 3 years’ experience. 31 

 32 

http://mi.eng.cam.ac.uk/Main/StradView/


2.2 Training Data and Masking 1 

Each of the major structures were given a separate image value, i.e., colour, in the 2 

segmentation mask, such that the network determined the unique weights to generate a 3 

similar regional colour-value from an MR image. On a 256-bit colour-scale, the three bones 4 

were stored in the blue colour channel where the femur colour code was 50, tibia was 100, 5 

and patella was 150. The cartilages were stored in the green colour channel where the femoral 6 

cartilage colour code was 50, the tibial was 100 and the patellar was 150. Additionally, for 7 

the AMROA dataset, the muscles were stored in the red colour channel with the medial 8 

vastus muscle code set to 100 and the medial gastrocnemius muscle colour code set to 200. 9 

The ACL mask was stored in the blue colour channel and the PCL in the green colour 10 

channel with both colour codes set to 200.  11 

 12 

The MRIs and image masks were converted from the DICOM and NIFTI formats (Larobina 13 

and Murino, 2014), respectively, to a common image format (Portable Network Graphics, 14 

PNG) before training. Noise-only images were not used for training or testing, as training a 15 

network to fit against zero-valued masks results in a poor constraint. After network training, a 16 

tissue- / region-specific Boolean mask was created on the predicted test images by removing 17 

prediction values outside of ±20 colour scale units of the tissue specific value. 3D mask 18 

predictions were obtained by iterating over the 2D segmented slices.  19 

 20 

2.3 Network Specifications 21 

This work uses the “pix2pix” framework of a conditional GAN (cGAN) described by Nvidia 22 

(Isola et al., 2017). The cGAN consists of two deep neural networks, a generator (G) and a 23 

discriminator (D). For our task, G learns to translate sagittal MR images of the knee joint 24 

(source images x) to semantic segmentation maps (G(x)), while D aims to differentiate 25 

between the real segmentation map (y) and the synthetically generated.    26 

 27 

The structure of a cGAN is illustrated in Figure 1. The loss function for this cGAN is 28 

 ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥,𝑦[𝑙𝑜𝑔 𝐷 (𝑥, 𝑦)] + 𝔼𝑥[𝑙𝑜𝑔( 1 − 𝐷(𝑥, 𝐺(𝑥))] (1) 29 

The loss function describes how G is minimized against a maximised D. Since both 30 

optimisation processes are dependent on each other, convergence is achieved by reaching a 31 

saddle point (simultaneously minimum / maximum for both networks' cost) rather than a 32 



minimum. The loss also incorporates a L1 distance to reduce image blurring and ensure that 1 

the generated image from G(x) are not significantly different from the target image y (Isola et 2 

al., 2017; Regmi and Borji, 2018). This L1 loss is given by 3 

 ℒ𝐿1(𝐺) = 𝔼𝑥,𝑦[||𝑦 − 𝐺(𝑥)||1] (2) 4 

The overall objective of the cGAN is to find the optimal solution to 5 

 𝐺 ∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺) (3) 6 

with λ being a hyper-parameter used for balancing the two losses (Regmi and Borji, 2018). 7 

 8 

The cGAN used in this work utilises the U-Net encoder-decoder architecture for the 9 

generator, which is frequently used for image segmentation problems (Ronneberger et al., 10 

2015). The generator was trained to generate images that are indistinguishable from a target 11 

image (i.e., the segmented map). Spatial consistency of the data is not guaranteed with a U-12 

Net segmented map, which can cause inaccurate boundaries (Ronneberger et al., 2015). 13 

However, adversarial losses in the discriminator regulate and therefore increase the accuracy 14 

to higher order shapes (Yang et al., 2017).  15 

 16 

We modified the U-Net generator from the “pix2pix” network by increasing the input layer to 17 

be able to train on 512 x 512 resolution images. For this an additional Convolution-18 

BatchNorm-leakyReLU layer was inserted in the encoding and a Convolution-BatchNorm-19 

ReLU layer in the decoding network part. 20 

 21 

The discriminator is a patch-based fully convolutional neural network, PatchGAN (Li and 22 

Wand, 2016; Long et al., 2018), which models the image as a Markov random field. It 23 

performs a convolutional patch-wise (N x N) classification with all the outputs in the patch 24 

averaged and taken as the output of D. D is therefore less dependent on distant pixels/voxels 25 

beyond a “patch diameter” and is a form of neighbouring texture loss. The PatchGAN can be 26 

applied to arbitrarily large images, due to a fixed size of the patch. 27 

 28 

To analyse the cGANs performance we compared it to the performance of a U-Net network, 29 

which is  widely used for image segmentation processes. We used the cGAN generator 30 

network as the U-Net network to maintain an effective comparison.    31 



 1 

The networks were implemented using PyTorch (Torch v1.0.1) and all training was 2 

performed on a Nvidia P6000 GPU card (3840 CUDA cores, 24 GB GDDR5X). The training 3 

phase of optimisation was performed as described by the “pix2pix” network, using stochastic 4 

gradient descent to minimise D(x,y) and stochastic gradient ascent to maximise D(x,G(x)). 5 

The Adam solver was used with a learning rate 0.0002 and momentum parameters, 1 0.5 = , 6 

2 0.999 = . We introduced random noise (jitter) during training by resizing the input images 7 

to 542 x 542 using bi-cubic interpolation followed by random cropping back to 512 x 512.   8 

 9 

A detailed description of the network architectures can be found in the Appendix.  10 

 11 

2.4 Segmentation Evaluation Metrics 12 

The Sørensen–Dice Similarity Coefficient (DSC) (Dice, 1945; Sørensen, 1948) was used to 13 

evaluate the overlap between the generated segmentation and the manual segmentation. The 14 

DSC ranges between 0 and 1, with 0 representing no overlap and 1 complete overlap between 15 

the two sets. DSC is defined as twice the size of the intersect divided by the sum of the sizes 16 

of two sample sets, given as   17 

 𝐷𝑆𝐶 =
2|𝑋∩𝑌|

|𝑋|+|𝑌|
 (4) 18 

for Boolean metrics. For the experiments involving the SKI10 and OAI ZIB datasets,  the 19 

volumetric overlap error (VOE) and the boundary distance-based metric average surfaces 20 

distance (ASD) were determined to assess segmentation accuracy and allow an appropriate 21 

comparison with previous studies using these datasets.. The VOE can be calculated as 22 

 23 

 𝑉𝑂𝐸 = 1 − 
|𝑋∩𝑌|

|𝑋∪𝑌|
 (5) 24 

with small values for VOE expressing greater accuracy.  25 

 26 

The ASD is expressed in mm and is defined as 27 

 28 



 𝐴𝑆𝐷 =
1

𝑁𝑋+𝑁𝑌
(∑ 𝐷𝑋(𝑦)

𝑁𝑋
𝑖=1 + ∑ 𝐷𝑌(𝑥)

𝑁𝑌
𝑖=1 )  (6) 1 

where 𝐷𝑋(𝑦) =  min
𝑥∈𝑋

‖𝑦 − 𝑥‖is the distance of a voxel y to a surface X and ‖∙‖ denotes the 2 

Euclidean norm.  3 

 4 

2.5 Evaluation of Network Characteristics 5 

This section aims at evaluating and adjusting specific network characteristics towards 6 

improving overall network performance, for both cGAN and U-Net. All networks in this 7 

section were trained for 100 epochs and all cGANs with a 70 x 70 PatchGAN discriminator 8 

unless otherwise stated. 9 

 10 

2.5.1 Evaluation of Network Objective Function: 11 

We evaluated the cGANs performance with different objective functions by combining the 12 

cGAN loss with different pixel-wise error losses. In this work the cGAN is tasked to output a 13 

segmentation map of multiple tissues having different features and locations in the input MR 14 

image. We assessed the shortcomings and strengths of including the ℒ𝐿1, ℒ𝐿2 and Smooth L1 15 

(ℒ𝑆𝑚𝐿1) (Girshick, 2015) loss functions in the cGAN objective. The ℒ𝐿2 loss and ℒ𝑆𝑚𝐿1 loss 16 

are given by 17 

 ℒ𝐿2(𝐺) = 𝔼𝑥,𝑦[||𝑦 − 𝐺(𝑥)||2
2] (7) 18 

 ℒ𝑆𝑚𝐿1(𝐺) = {
0.5 ∙ 𝔼𝑥,𝑦[||𝑦 − 𝐺(𝑥)||2

2] ,    if |𝑦 − 𝐺(𝑥)| < 1  

𝔼𝑥,𝑦[||𝑦 − 𝐺(𝑥)||1] − 0.5 ,  otherwise              
  (8) 19 

Furthermore, the weighting hyperparameter λ between the cGAN loss and pixel-wise error 20 

loss was changed to vary the balance between the two task losses. λ = 0.01, 1, 100 and 10000 21 

were investigated. Network training with the cGAN loss alone (λ = 0) was additionally 22 

performed and evaluated.  23 

 24 

We also trained the U-Net with the same three different pixel-wise error losses (ℒ𝐿1, ℒ𝐿2 and 25 

ℒ𝑆𝑚𝐿1) as the cGAN to maintain an effective comparison. 26 

 27 



2.5.2 Evaluation of Altering the Loss Objective during Training: 1 

After obtaining initial results, we observed that the cGAN was unable to segment muscle 2 

tissues, independent of the objective function trained on. Therefore, we decided to explore the 3 

effect of varying the loss objective during training. For this, we trained a cGAN with 4 

ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿2 loss and a U-Net with ℒ𝐿2 loss for 50 epochs and then changed the loss 5 

functions for the ensuing 50 epochs to ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 and ℒ𝐿1, respectively.  6 

 7 

2.5.3 Evaluation of the Generator Depth: 8 

We analysed the effect of changing the depth of the generator network on the cGANs and U-9 

Nets quantitative performance. In addition to the generator down-sampling the input through 10 

nine convolutional networks, we tested a generator consisting of seven and five convolutions 11 

during down-sampling. Furthermore, we assessed the quantitative performance of the 12 

generator network with different numbers feature channels. We compared networks starting 13 

with different minimum number of feature channels (16, 32, 64 and 128) and thus end at 14 

different maximum numbers of feature channels (128, 256, 512 and 1024). All cGANs were 15 

trained with ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 loss with λ = 100 and all U-Nets with the ℒ𝐿1 loss. Detailed 16 

descriptions of the generator network architectures can be found in the Appendix. 17 

 18 

2.5.4 Evaluation of the PatchGAN Receptive Field Size: 19 

We evaluated the effect of changing the PatchGAN receptive field size on the cGANs 20 

qualitative (artefact emergence) and quantitative (segmentation accuracy) performance. In 21 

addition to the 70 x 70 PatchGAN, we tested a 1 x 1 (PixelGAN), 34 x 34 and 286 x 286 22 

PatchGAN. All cGANs were trained with ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 loss with λ = 100. Detailed 23 

descriptions of the discriminator network architectures can be found in the Appendix. 24 

 25 

2.5.5 Evaluation of Transfer Learning: 26 

Since the AMROA dataset only comprises of a low number of subjects (N=8) for training, we 27 

assess the influence of transfer learning on network performance, by initially training both a 28 

cGAN (ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1) and a U-Net (ℒ𝐿1) for 20 epochs on the larger SKI10 and OAI ZIB 29 

training datasets separately followed by network fine-tuning for 80 epochs on the smaller 30 

AMROA training set. Additionally, a cGAN and a U-Net were trained for 20 epochs on the 31 

AMROA training dataset followed by network refinement training for 80 epochs on either the 32 

SKI10 or OAI ZIB training set to analyse the potential segmentation improvement of SKI10 33 



and OAI ZIB. Network performance evaluations were performed using AMROA, SKI10 and 1 

OAI ZIB testing datasets. As determined from the previous sections, the cGAN trained with 2 

the ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 loss objective (λ=100) and a 1 x 1 PixelGAN as well as the U-Net trained 3 

with the ℒ𝐿1 loss objective achieved the highest segmentation accuracies for most knee joint 4 

tissues segmented in the AMROA dataset and were used in this section.  5 

 6 

 7 

3. Results and Discussion 8 

3.1 Network Training and Testing  9 

Semi-manual segmentation of the AMROA images by the reader required ~30 minutes per 10 

subject-volume. cGAN training was performed in 80 seconds/epoch for the AMROA training 11 

dataset, and 390 seconds/epoch for the SKI10 dataset. U-Net training was performed in 45 12 

seconds/epoch for the AMROA training dataset, and 185 seconds/epoch for the SKI10 13 

dataset. Segmentation post-training on a single slice was processed in ≈0.13s. The highlights 14 

of the upcoming sections are: 15 

3.2 The U-Net trained with ℒ𝐿1 loss objective outperformed the cGANs and the U-16 

Nets trained with different loss objectives in the segmentation performance of 17 

most knee joint tissues.   18 

3.3 Altering the network objective function midway through cGAN and U-Net 19 

training lead to unanticipated but advantageous results. This variation resulted in 20 

improved segmentation performances of several tissues and the cGANs capability 21 

to segment muscle tissue, which previously had not been possible with non-altered 22 

objective function training. 23 

3.4 The cGAN and U-Net trained with nine convolutions/transpose convolutions in 24 

the networks encoding/decoding parts and a minimum feature channel change of 25 

64 achieved the highest segmentation accuracies for most knee joint tissues 26 

annotated.  27 

3.5 The greatest improvements in segmentation performance of the cGAN was 28 

achieved by reducing the receptive field size of the discriminator network. This 29 

resulted in segmentation accuracies equivalent to those of the U-Net.  30 

3.6 Transfer learning not only increased segmentation accuracy of some tissues of the 31 

fine-tuned dataset, but also increased the network’s capacity to maintain 32 

segmentation capabilities for the pretrained dataset. 33 



3.7 Overall, the cGAN trained with the ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 loss objective (λ=100) and a 1 x 1 

1 PixelGAN as well as the U-Net trained with the ℒ𝐿1 loss objective achieved 2 

comparable and the highest segmentation accuracies for most knee joint tissues 3 

segmented.    4 

 5 

3.2 Evaluation of Network Objective Function  6 

The quantitative results of assessing the impact of combining the cGAN objective with three 7 

different pixel error losses with varying weightings λ on the cGANs segmentation 8 

performance are in Table 2, with the qualitative results depicted in Figure 2B. The cGANs 9 

trained with larger values for λ (λ=100 and 10000) achieved the highest segmentation 10 

performance for all tissues and the produced segmentation maps were less affected by 11 

artefacts compared to the cGANs trained with λ= 0.01 and 1. For instance, the images from 12 

the networks trained with ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 (λ= 0.01), ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿2 (λ= 1)  and ℒ𝑐𝐺𝐴𝑁 +13 

𝜆ℒ𝑆𝑚𝐿1 (1) had artefacts where the networks seem to detect bone or cartilage structures 14 

where there were none in the original MR input image. By increasing the weighting 15 

hyperparameter λ, more emphasis is put on the pixel error losses to guide the network to 16 

produce more accurate representations of the ground truth segmentation map and reduces 17 

these artefacts. However, the influence of GAN loss diminishes with very large values for λ 18 

with the discriminator having minimal effect on generator training.  19 

 20 

The qualitative results of training a U-Net with different pixel error losses are presented in 21 

Figure 2C while the quantitative results are listed in Table 3. The U-Net trained with ℒ𝐿1 loss 22 

objective achieves the highest accuracy for all tissues compared to ℒ𝐿2 and ℒ𝑆𝑚𝐿1 loss except 23 

for the muscle tissues. Muscle tissues appeared on the majority of 2D MR knee images seen 24 

by the network during training, however we only segmented two selective medial muscles in 25 

the AMROA dataset due to time constraints. It is interesting to note that although the U-Net 26 

trained with ℒ𝐿1 was not able to capture the medial head of gastrocnemius and vastus 27 

medialis muscles, the cGAN trained with the ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 objective (λ = 10000) was. 28 

Simple absolute difference (ℒ𝐿1) was not capable of differentiating lateral muscle textures 29 

from medial. The U-Nets trained with ℒ𝐿2 and ℒ𝑆𝑚𝐿1 losses were capable of segmenting the 30 

selective muscles with high accuracies as they are penalised more by the squaring term in 31 

their loss objectives when the difference between ground truth and model predictions are 32 

large. Interestingly, although the patella bone and cartilage only appear on very few slices in 33 



a 3D dataset, and ACL and PCL on even fewer, the U-Net with ℒ𝐿1 segmented these tissues 1 

better than the ℒ𝐿2 and ℒ𝑆𝑚𝐿1 (ℒ𝐿2: DSCP Bone < 0.2%, DSCP Cartilage < 5.3%, DSCACL < 2 

15.2%, DSCPCL < 21.3%; ℒ𝑆𝑚𝐿1: DSCP Bone < 0.4%, DSCP Cartilage < 6.0%, DSCACL < 6.9%, 3 

DSCPCL < 17.8%). This could be explained by the cruciate ligament and patellar tissues either 4 

being present or not on a 2D training image and the network is not being constrained to only 5 

segment medial tissues. Overall, the U-Net with ℒ𝐿1 produced sharper boundaries, especially 6 

for the smaller ligament structures, as compared to the segmentation maps produced by U-7 

Nets trained with ℒ𝐿2 and ℒ𝑆𝑚𝐿1 , in which the boundaries are more diffused.  8 

 9 

We decided to assess the model’s performance when including noise-only images in the 10 

testing dataset as we excluded them during model training, and this might limit the models’ 11 

use in a clinical setting. This effect was only evaluated for a the cGAN trained with the 12 

ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 (λ = 100) objective function and the U-Net trained with the ℒ𝐿1 loss objective. 13 

The quantitative results are listed in Table 4 with qualitative results displayed in Figure 3. 14 

Both networks showed comparable segmentation performances after testing with noise-only 15 

images with percentage differences (%-Diff) of the DSC for all segmented tissues ≤ 2.3%. 16 

Including noise-only images into the testing set had greater effects on the cGAN DSC of the 17 

medial vastus muscle (VM muscle) (%-Diff = 1.5%), the ACL (%-Diff = 1.6%) and the PCL 18 

(%-Diff = 1.9%) as well as on the U-Net DSC of the ACL (%-Diff = 2.3%). These higher 19 

differences could be explained by the lower segmentation capability of these structures by the 20 

cGAN and U-Net models to begin with (cGAN: DSCVM muscle: 0.113 vs 0.098, DSCACL: 0.577 21 

vs 0.593; DSCPCL: 0.073 vs 0.092; U-Net: DSCACL: 0.643 vs 0.620). Furthermore, the larger 22 

%-Diff in the DSC of the VM muscle is caused by the cGAN model irregularly segmenting 23 

VM muscle tissues on noise only images (Figure 3B).  24 

 25 

3.3 Evaluation of Altering Loss Objective during Training  26 

Figure 4 compares the qualitative results and Table 5 compares the DSCs obtained from a 27 

cGAN and a U-Net, in which the objective functions were changed midway through training 28 

to the cGANs and U-Nets trained with non-altered objective functions. Training a cGAN with 29 

varied loss objective (ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿2 → ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1) notably reduced its ability to segment 30 

the ACL, however considerably improved its segmentation performance on the medial vastus 31 

and gastrocnemius muscles, as well as PCL, compared to the other cGANs (ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 32 

and ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿2). The images in Figure 4B show the improvements in muscle 33 



segmentation with the cGAN trained with varied loss objective. This was a surprising result 1 

as neither the cGAN trained with ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 nor with ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿2 alone were able to 2 

segment muscle. Looking at the different training epochs of the cGAN trained with varied 3 

loss, during ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿2 no muscle tissue was being semantically segmented. However, 4 

when changing to ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 and between training epochs 50 and 60, the network started 5 

segmenting muscle tissue (Figure 5). After the initial 50 epochs of ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿2 training, the 6 

cGANs weights must have been favourable for continuing training with ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 to 7 

additionally semantically segment muscle tissue. 8 

 9 

The U-Net trained with altered objective function (ℒ𝐿2 → ℒ𝐿1) also showed notable 10 

improvements in the segmentation performance of the medial vastus and gastrocnemius 11 

muscles while the segmentation scores of the other knee tissues remained comparable with 12 

those of the other U-Nets (ℒ𝐿1 and ℒ𝐿2).  Figure 4C qualitatively compares the results of a U-13 

Net trained with altered loss objective to those of the U-Nets trained with a single, non-14 

altered loss objective. As mentioned in the corresponding method section, this idea came 15 

after reviewing a few initial training results. While the U-Net trained with the ℒ𝐿1 objective 16 

was not able to segment the medial vastus and gastrocnemius muscles after training, the U-17 

Net with the ℒ𝐿2 loss objective was. However, these images were slightly blurrier, and the 18 

segmentation accuracy of the remaining tissues was poorer than compared to ℒ𝐿1. By varying 19 

the loss objective during training, the strengths of ℒ𝐿2 and ℒ𝐿1 were combined. We decided to 20 

first train the network with ℒ𝐿2 loss to capture all tissues and then to change to ℒ𝐿1 halfway 21 

through training to make the images sharper and increase segmentation accuracy. This 22 

method created a more proficient network capable of segmenting all tissues with higher or 23 

comparable accuracies to the networks trained with non-altered loss objectives. 24 

 25 

3.4 Evaluation of the Generator Depth  26 

The quantitative results of assessing the impact of generator network depth on the cGANs 27 

and U-Nets segmentation performances are in Tables 6 and 7.  28 

 29 

The cGAN with a generator down-sampling the input through nine convolutional networks 30 

achieved the highest DSC scores for tibial and patellar bone, as well as for femoral and 31 

patellar cartilage. Femoral bone and tibial cartilage were best segmented by the cGAN with 32 

five convolutions/transpose convolutions in the generator encoding/decoding parts. The 33 



medial vastus and gastrocnemius muscles, as well as ACL and PCL were best segmented by 1 

the cGAN with seven convolutions. Training the cGAN with a minimum feature channel 2 

change of 64 resulted in the highest segmentation scores for most tissues except for femoral 3 

bone, tibial cartilage and the medial vastus muscle.    4 

 5 

The U-Net trained with nine convolutions/transpose convolutions in the networks 6 

encoding/decoding parts achieved the highest segmentation accuracies for all but one tissue 7 

(femoral cartilage), which was slightly better segmented by the U-Net with five 8 

convolutions/transpose convolutions. Training the U-Net with a minimum feature channel 9 

change of 64 resulted in the highest DSC scores for most tissues apart from patella cartilage 10 

and ACL which were segmented best by the U-Net trained with a minimum feature channel 11 

change of 128.    12 

 13 

It is important to note for this section that increasing the number of convolutions and feature 14 

channels in the generator network substantially increases the overall number of parameters in 15 

the network and the time per epoch required to train the network (see network architectures in 16 

the Appendix for details). A considered decision between increase in learning time and 17 

significant improvement in segmentation accuracy has to be made.   18 

 19 

3.5 Evaluation of PatchGAN Receptive Field Size  20 

Figure 6 shows the qualitative comparison of the effect of using different patch sizes in the 21 

discriminator network, while the corresponding DSCs are listed in Table 6. The cGAN 22 

trained with the 1 x 1 PatchGAN (PixelGAN) achieved the highest segmentation accuracy for 23 

most tissues except for femoral and tibial cartilage and both muscle tissues, which were best 24 

segmented by the 34 x 34 PatchGAN. Increasing the receptive field size increases the number 25 

of parameters in the discriminator network and therefore may be more difficult to train. 26 

Additionally, as in the ‘pix2pix’ paper (Isola et al., 2017), we also noticed the repetitive tiling 27 

/ checkerboard artefact (Figure 7). However, in our instance, the artefacts become more 28 

pronounced with every increase in patch size instead of the inverse tendency as seen by (Isola 29 

et al., 2017). This could be a result of us assigning the cGANs with the reverse task (image to 30 

label) compared to the one performed by (Isola et al., 2017) (label to image).    31 

 32 



Figure 8 depicts the loss evolution during network training of the cGAN trained with the 1 x 1 

1 PatchGAN discriminator. The loss evolutions of the cGAN generator (ℒ𝑐𝐺𝐴𝑁 and ℒ𝐿1) and 2 

discriminator (ℒ𝑟𝑒𝑎𝑙 and ℒ𝑓𝑎𝑘𝑒) are shown in Figure 8A and 8B, respectively. Figure 8B 3 

highlights how the Nash equilibrium was reached for the discriminator network during cGAN 4 

training. 5 

 6 

3.6 Evaluation of Transfer Learning  7 

The quantitative results of this section are presented in Tables 9 and 10 with qualitative 8 

comparisons between single step (one dataset) and two step training (transfer learning) 9 

displayed in Figures 9 and 10.  10 

 11 

When comparing the segmentation performances of the proposed cGAN and U-Net without 12 

and with transfer learning and testing on the SKI10 testing dataset (Table 9, Figures 9A-C), 13 

the AMROA-pretrained / SKI10-retrained (AMROA → SKI10) U-Net showed the highest 14 

DSC scores for femoral and tibial bone and the highest boundary accuracy (i.e. smallest 15 

ASDs) for femoral bone, while the SKI10-only trained U-Net segmented the tibial bone with 16 

the highest boundary accuracy. Femoral cartilage was best segmented by the AMROA-17 

pretrained / SKI10-retrained (AMROA → SKI10) cGAN and tibial cartilage by the SKI10-18 

only trained cGAN.  19 

 20 

Testing the OAI ZIB testing dataset on the proposed cGAN and U-Net without and with 21 

transfer learning (Table 9, Figures 9D-F), the AMROA-pretrained / OAI ZIB-retrained 22 

(AMROA → OAI ZIB) cGAN showed the highest accuracies for tibial bone and femoral 23 

cartilage, while the OAI ZIB-only trained cGAN segmented the femoral bone and tibial 24 

cartilage with the highest accuracies.  25 

 26 

When testing the cGANs and U-Nets on the AMROA testing dataset (Table 10, Figure 10), 27 

the SKI10-pretrained / AMROA-retrained (SKI10 → AMROA) U-Net had the highest DSCs 28 

for femoral and tibial bone as well as the ACL. Femoral cartilage as well as patellar bone and 29 

cartilage was segmented most accurately by the OAI ZIB-pretrained / AMROA-retrained 30 

(OAI ZIB → AMROA) U-Net. The AMROA only trained U-Net showed the best 31 

segmentation accuracy for tibial cartilages. The SKI10-pretrained / AMROA-retrained 32 

(SKI10 → AMROA) cGAN provided the highest segmentation score for the vastus medialis 33 



muscle while the medial head of gastrocnemius muscle and the PCL was best segmented by 1 

the OAI ZIB-pretrained / AMROA-retrained (OAI ZIB → AMROA) cGAN.  Compared to 2 

the U-Net, the cGAN could successfully segment both medial muscles which could promote 3 

a strength of the cGAN. A further note is that, although the SKI10 and OAI ZIB datasets only 4 

comprised of segmentations of femoral and tibial bone and cartilage, the cGANs and U-Nets 5 

initialised with the respective SKI10- and OAI ZIB-pretrained network weights and retrained 6 

on the AMROA dataset were able to recuperate and capture patellar, ligament and muscle 7 

tissues.      8 

 9 

A challenge of any machine learning technique is obtaining a training set that optimises the 10 

amount of variation from the rare morphology of pathological conditions or image artefacts. 11 

The AMROA dataset was highly controlled, with the patients and imaging occurring with a 12 

single imaging protocol on a single MRI system. The images showed a clear bone-cartilage 13 

separation and enabled better cartilage segmentation scores after training than the SKI10 14 

dataset. The OAI ZIB dataset highlights the benefits of training on a very large number of 15 

images with the cGAN and U-Net (OAI ZIB-only trained) achieving DSC ≥ 0.984 for bone 16 

and DSC ≥ 0.837 for cartilage segmentations. 17 

 18 

The ability for the network to be used under variable conditions was simulated by using three 19 

knee datasets (AMROA, SKI10 and OAI ZIB). Even without transfer learning, the AMROA 20 

training enabled SKI10 and OAI ZIB segmentation and vice versa, albeit not with high 21 

accuracy, but nonetheless indicating the robustness of deep learning methods. Transfer 22 

learning not only improved the segmentation accuracy for some tissues of the local dataset 23 

but also enhanced the networks ability to segment the SKI10 / OIA ZIB test dataset by 24 

introducing more heterogeneity into the model. Even though the SKI10- and OAI ZIB-25 

pretrained networks were then fine-tuned to segment the local AMROA dataset, it could 26 

segment the SKI10 and OAI ZIB testing dataset with an improved performance compared to 27 

the AMROA-only trained network without pretraining. This effect was seen for both cGANs 28 

and U-Nets. 29 

 30 

3.7 AMROA: Comparison to Previous Studies  31 

In this subsection, the results obtained for the different tissues semantically segmented in this 32 

study are compared to those of previous studies. The cGAN and U-Net achieving the highest 33 



segmentation accuracy on the AMROA dataset for each respective tissue is chosen for this 1 

purpose.  2 

 3 

Bone:  4 

While cartilage has been traditionally studied for OA, bone shape has been under increasing 5 

investigations (Ambellan et al., 2019; Felson and Neogi, 2004). Bone shape has been linked 6 

to radiographic OA (Hunter et al., 2015; Neogi et al., 2013; Wise et al., 2018) and associated 7 

with longitudinal pain progression (Hunter et al., 2015). Segmented bone can be used to 8 

separate out bone-specific diseases, such as osteochondral defects.  9 

 10 

The OAI ZIB-pretrained / AMROA-retrained cGAN trained with the ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 loss 11 

objective (λ=100) and a 1 x 1 PixelGAN generated segmentations of femoral (DSC = 0.972), 12 

tibial (DSC = 0.962) and patellar (DSC = 0.947) bone with the highest accuracy. The SKI10-13 

pretrained / AMROA-retrained U-Net (ℒ𝐿1 loss objective) achieved slightly higher 14 

segmentation accuracies for femoral and tibial bone tissues (femoral: DSC = 0.974; tibial: 15 

DSC = 0.965) and the OAI ZIB-pretrained / AMROA-retrained U-Net for patellar bone (DSC 16 

= 0.948), compared to the cGANs. The boundaries of the images, near the top and bottom of 17 

any 2D slice, did not always segment all bone, which is where the MRI radiofrequency (RF) 18 

transmit and receive uniformity was poor due to characteristics of the MRI coil. Traditional 19 

semi-automatic approaches involving signal threshold, region-based or clustering 20 

segmentation can be similarly sensitive to image non-uniformities (Swanson et al., 2010). 21 

These non-uniformities are shown as a change in signal-to-noise or darkening of the 22 

surrounding muscle tissues (see lower regions of Figure 2). These effects from RF transmit or 23 

receive non-uniformity could be mitigated with a larger training population, as more complex 24 

modelling of data is possible. Nevertheless, segmentation of the patella achieved the lowest 25 

accuracy. The patella has the widest range of inter-subject variability when compared to the 26 

larger tibial and femoral bones. The patella bone can vary in both shape and position, shifting 27 

due to the orientation and bend of the knee. Additionally, due to its smaller volume, fewer 28 

training images are used for the patella segmentation. 29 

 30 

The cGAN and U-Net bone segmentation scores achieved in this study are similar to those 31 

achieved by a CycleGAN method using unannotated knee MR images for femoral (DSC = 32 

0.95 – 0.97) and tibial (DSC = 0.93 – 0.95) bone segmentation (Liu, 2019), and a 33 



convolutional encoder-decoder network combined with a 3D fully connected conditional 1 

random field and simplex deformable modelling for femoral (DSC = 0.970), tibial (DSC = 2 

0.962) and patellar (DSC = 0.898) bone segmentation (Zhou et al., 2018).  3 

 4 

Cartilage 5 

For a long time, OA was considered a disease primarily involving variations in articular 6 

cartilage composition and morphology. Therefore, the attention was predominantly placed on 7 

the extraction of OA biomarkers from quantitative MR imaging techniques using manual or 8 

semi-manual segmentation techniques that suffer from intra- and inter-observer variability 9 

(Pedoia et al., 2016). Deep learning methods can provide a fast and repeatable alternative to 10 

overcome these time-consuming and operator-dependent procedures.   11 

 12 

The OAI ZIB-pretrained / AMROA-retrained cGAN trained with the ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 loss 13 

objective (λ=100) and a 1 x 1 PixelGAN generated segmentations of femoral (DSC = 0.875), 14 

tibial (DSC = 0.811) and patellar (DSC = 0.879) cartilage with the highest accuracy from all 15 

cGAN trainings. The OAI ZIB-pretrained / AMROA-retrained U-Net (ℒ𝐿1 loss objective) 16 

achieved marginally higher accuracies for femoral (DSC = 0.893) and patellar (DSC = 0.898) 17 

cartilage segmentations and the AMROA-only trained U-Net (ℒ𝐿1 loss objective) achieved a 18 

slightly higher segmentation accuracy for tibial cartilage (DSC = 0.834) compared to the 19 

cGAN results.  20 

 21 

The cartilage segmentation performances of both cGAN and U-Net are comparable to those 22 

attained by a 2D U-Net for femoral, tibial and patellar cartilage segmentations on T1ρ-23 

weighted (DSC=0.632 - 0.702) and DESS MR images (DSC=0.767 - 0.878) (Norman et al., 24 

2018), a CycleGAN method for femoral and tibial cartilage segmentation on PD-weighted 25 

(DSC=0.65 - 0.66) and T2-weighted FSE images (DSC=0.81 - 0.75) (Liu, 2019), as well as 26 

the recently investigated cGAN for femoral, tibial and patellar segmentation on DESS MR 27 

images (DSC=0.843 - 0.918) (Gaj et al., 2019). 28 

 29 

Muscle 30 

As muscle weakness and atrophy can be regarded as preceding risk factors and resulting pain-31 

related consequences for the development and progression of OA, studying morphological 32 



changes in knee joint muscles has become increasingly important (Fink et al., 2007; 1 

Slemenda et al., 1997).  2 

 3 

The SKI10-pretrained / AMROA-retrained cGAN and the OAI ZIB-pretrained / AMROA-4 

retrained cGAN trained with the ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 loss objective (λ=100) and a 1 x 1 PixelGAN 5 

segmented the medial gastrocnemius muscle (DSC = 0.909) and medial vastus muscle (DSC 6 

= 0.922) with the highest accuracies, respectively. The U-Net trained with altered loss 7 

objective (ℒ𝐿2 → ℒ𝐿1) achieved the highest segmentation accuracies for both the medial 8 

gastrocnemius (DSC = 0.933) and vastus (DSC = 0.914) muscles. 9 

 10 

Our results are comparatively lower compared to those of a semi-automatic single-atlas (DSC 11 

= 0.95 - 0.96) and fully-automatic multi-atlas (DSC = 0.91 – 0.94) based approach for medial 12 

vastus segmentation (Le Troter et al., 2016), and a 2D U-Net for quadriceps (DSC = 0.98) 13 

segmentation (Kemnitz et al., 2019). A crucial difference between these studies and ours is 14 

the plane in which segmentation was performed. While muscles are typically segmented on 15 

axial images as this provides a more straightforward task with clearer separation between 16 

different muscles, our multi-class tissue segmentation approach was performed on sagittal 17 

images. Segmenting different muscles in the sagittal plane is a demanding task, especially in 18 

areas of the calf muscles where the two-headed gastrocnemius muscle overlaps (medial and 19 

lateral) while also overlaying the soleus muscle. 20 

 21 

Cruciate Ligament 22 

There has been a growing interest in investigating and understanding the mechanism 23 

responsible for the post-traumatic development of OA following injury to the cruciate 24 

ligaments, especially the ACL (Chaudhari et al., 2008; Messer et al., 2019; Monu et al., 25 

2017). Although ACL reconstruction and rehabilitation can help restore patients to normal 26 

life and previous activities, it cannot prevent the long-term risk of developing OA (Paschos, 27 

2017). Accurate and repeatable segmentations of the cruciate ligaments are required when 28 

aiming at evaluating longitudinal changes in the cruciate ligaments following reconstructive 29 

surgery. 30 

 31 

In our study, the OAI ZIB-pretrained / AMROA-retrained cGAN trained with the 1 x 1 32 

PixelGAN and ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 loss objective (λ=100) achieved the highest accuracy for ACL 33 



(DSC = 0.664) and PCL segmentation (DSC = 0.652). The SKI10-pretrained / AMROA-1 

retrained U-Net (ℒ𝐿1 loss objective) achieved  a similar accuracy for ACL segmentation 2 

(DSC = 0.665) and the AMROA-only trained U-Net (ℒ𝐿1 loss objective) achieved a 3 

marginally lower accuracy for PCL segmentation (DSC = 0.641), compared to the best 4 

performing cGANs.  5 

 6 

(Lee et al., 2013) proposed a graph cut method for automatic ACL segmentation and attained 7 

a DSC score of 0.672, while (Paproki et al., 2016) used a patch-based method for PCL 8 

segmentation to achieve a DSC score of 0.744. Using a 3D convolutional neural network 9 

(CNN), (Mallya et al., 2019) achieved DSC scores of 0.40 and 0.61 for ACL and PCL 10 

segmentations, respectively. When combining their 3D CNN with a deformable atlas-based 11 

segmentation method, their ACL (DSC = 0.84) and PCL (0.85) segmentation accuracies 12 

increased substantially. In general, 3D networks could provide higher segmentation 13 

accuracies especially for fine structures such as the cruciate ligaments that only appear on a 14 

few 2D slices in a 3D dataset. However, 2D segmentation techniques are useful for broader 15 

applicability, as 2D imaging is often faster and currently still more clinically employed than 16 

3D imaging. 17 

 18 

The lower similarity scores achieved in our study compared to the other studies could arise 19 

from the use of 3D-FS SPGR images as source images during training as these are non-20 

optimal for the segmentation of the cruciate ligaments due to their less than ideal soft tissue 21 

separation with surrounding structures and fluid. Fat-saturated proton-density-weighted fast 22 

spin echo or T2-weighted fast spin echo images are more suitable for segmentation purposes 23 

as shown by (Mallya et al., 2019) and (Paproki et al., 2016), respectively. These sequences 24 

are clinically used for cruciate ligament assessment due to their dark appearance and clear 25 

separation from fluid and other surrounding tissues.  26 

 27 

3.8 SKI10 and OAI ZIB: Comparison to Previous Studies 28 

In this subsection, the segmentation results of the SKI10 and OAI ZIB datasets in this study 29 

are compared to those of previous studies. The cGAN and U-Net achieving the highest 30 

segmentation accuracy on these datasets is chosen for this purpose.  31 

 32 



SKI10 1 

The AMROA-pretrained / SKI10-retrained U-Net (ℒ𝐿1 loss objective) achieved a comparable 2 

ASD score for femoral bone (ASD = 0.44 mm) and an improved ASD score for tibial bone 3 

(ASD = 0.26 mm) to those reported by (Liu et al., 2017) and (Ambellan et al., 2019). 4 

However, the segmentation accuracies for femoral (VOE ≥ 42.2%) and tibial (VOE ≥ 47.6%) 5 

cartilage achieved by our models were substantially lower.   6 

 7 

OAI ZIB 8 

The OAI ZIB-only trained cGAN trained with the ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 loss objective (λ=100) and a 9 

1 x 1 PixelGAN generated segmentations of femoral bone (DSC = 0.985) and tibial cartilage  10 

(DSC = 0.839) with the highest accuracy. AMROA-pretrained / OAI ZIB-retrained cGAN 11 

trained with the 1 x 1 PixelGAN and ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 loss objective (λ=100) achieved the 12 

highest accuracy for tibial bone (DSC = 0.985) and femoral cartilage (DSC = 0.897) 13 

segmentation. The ASD of both the femoral (ASD = 0.33 mm) and tibial (ASD = 0.29 mm) 14 

bones were smaller than image resolution of the OAI DESS images (0.36 × 0.36 × 0.7 mm3). 15 

Although we achieve similar DSC scores for all tissues on the OAI ZIB dataset compared to 16 

those presented in (Ambellan et al., 2019), our ASD scores were larger. The pixel-wise error 17 

losses (ℒ𝐿1. ℒ𝐿2 and ℒ𝑆𝑚𝐿1) used to train the networks in our work were chosen to maintain 18 

an effective comparison between the cGAN and the U-Net. However, training our models 19 

with loss functions more traditionally used for segmentation purposes such as multi-class 20 

Dice similarity or cross entropy might lead to more comparable results for boundary-21 

distance-based metrics.  22 

 23 

3.9 Limitations 24 

The network performances are depended on the accuracy of the ground truth segmentations. 25 

Inaccuracies or errors in the segmentation maps could result in a less accurate network, 26 

especially when trained on a low number of image volumes, as done in this study. 27 

Additionally, training a network on a low number of high-quality images restricts the 28 

networks applicability to only highly controlled studies with homogeneous data. Therefore, 29 

the networks trained in this study might be limited in their application in clinical settings 30 

where high image quality is not always achievable due to patient conditions and operator 31 

variabilities.   32 

 33 



Network training on 2D MR image slices is considerably less computationally demanding 1 

than on 3D volumes. For the purposes of this study such as investigating the effects of 2 

training with different loss objectives and cGAN discriminator networks, it was sufficient to 3 

train on 2D images. Nevertheless, the segmentation of small knee joint structures, such as the 4 

cruciate ligaments, could benefit from 3D networks that should add spatial continuity along 5 

the slice dimension.  6 

 7 

Furthermore, the segmentation results presented in this study are from standalone networks 8 

without further processing within a pipeline. Therefore, the obtained results, especially for 9 

cartilage segmentation, are not comparable to those from current state-of-the-art pipeline 10 

methods such as described by (Liu et al., 2017) and (Ambellan et al., 2019) that initially 11 

perform automated segmentation using a CNN followed by further refinement using 12 

deformable or statistical shape models, respectively.  13 

 14 

Lastly, additional investigations into varying the network architectures and optimisation 15 

strategies are warranted, with ever more loss functions as well as layer combination and 16 

optimisation strategies continuously being developed. 17 

 18 

4. Conclusion 19 

This work demonstrated the usage of a cGAN, using a U-Net generator with a PatchGAN 20 

discriminator, for the purpose of automatically segmenting multiple knee joint tissues on MR 21 

images. While DSC > 0.9 were achieved for all segmented bone structures and DSC > 0.75 22 

for cartilage and muscle tissues, DSC of only ≈0.64 were achieved for cruciate ligament 23 

segmentations. Nevertheless, this segmentation performance was attained despite the low 24 

number of subjects (N=8) for training on the local dataset. Although the U-Net outperformed 25 

the cGAN in most knee joint tissue segmentations, this study provides an optimal platform 26 

for future technical developments for utilising cGANs for segmentation tasks. By enabling 27 

automated and simultaneous segmentation of multiple tissues we hope to increase the 28 

accuracy and time efficiency for evaluating joint health in osteoarthritis. 29 

 30 

 31 

 32 

 33 



Appendix  1 

Network Description 2 

Generator: The encoding part of the generator network consists of the repeated application 3 

of nine 4x4 convolutions with stride 2, down-sampling the input by a factor of 2 at each 4 

layer. Each convolution is followed by a batch normalisation layer (except the first layer) and 5 

a leaky rectified linear unit (leaky ReLU) with slope 0.2. During the first encoding step the 6 

number of feature channels is changed from 3 to 64. At the subsequent three encoding steps, 7 

the number of feature channels is doubled (64 – 512), while the following five are kept at 8 

512. In the ensuing decoding part, the input is repeatedly up-sampled by a factor of 2 by nine 9 

4x4 transpose convolutional layers with stride 2 and additional skip connections 10 

(concatenations) between each layer i and 9-i, changing the number of feature channels at 11 

each step. The first four decoder convolutions are followed by batch normalisation, dropout 12 

(50%) and a ReLU. The next four decoder convolutions are followed by batch normalisation 13 

and a ReLU without dropout. After the final layer a convolution followed by a Tanh 14 

activation layer is applied to generate the segmentation map.  15 

Total number of parameters: 66.999 M 16 

Training time (s/epoch): AMROA: 135 (cGAN with 1x1 PixelGAN) 17 

130 (cGAN with 70x70 PatchGAN)  18 

100 (U-Net) 19 

    SKI10:  380 (cGAN with 1x1 PixelGAN) 20 

      210 (U-Net) 21 

    OAI ZIB: 2710 (cGAN with 1x1 PixelGAN) 22 

      1530 (U-Net) 23 

Generator with five convolutions in encoder/decoder: In this generator network, the 24 

encoding part consists of the repeated application of five 4x4 convolutions with stride 2, 25 

down-sampling the input by a factor of 2 at each layer. In the ensuing decoding part, the input 26 

is repeatedly up-sampled by a factor of 2 by five 4x4 transpose convolutional layers with 27 

stride 2 and additional skip connections between each layer i and 5-i. 28 

Total number of parameters: 16.659 M  29 

Training time (s/epoch): AMROA: 110 (cGAN with 70x70 PatchGAN)  30 

90 (U-Net) 31 



Generator with seven convolutions in encoder/decoder: The encoding part consists of the 1 

repeated application of seven 4x4 convolutions with stride 2, down-sampling the input by a 2 

factor of 2 at each layer. In the subsequent decoding part, the input is repeatedly up-sampled 3 

by a factor of 2 by seven 4x4 transpose convolutional layers with stride 2 and additional skip 4 

connections between each layer i and 7-i. 5 

Total number of parameters: 41.829 M  6 

Training time (s/epoch): AMROA: 120 (cGAN with 70x70 PatchGAN)  7 

100 (U-Net) 8 

Generator with 16 as minimum number of feature channels: In this network, the number 9 

of feature channels is changed from 3 to 16 during the first encoding step. During the 10 

following three encoding steps, the number of feature channels is doubled (16 – 128), while 11 

the subsequent five are kept at 128. 12 

Total number of parameters: 4.191 M  13 

Training time (s/epoch): AMROA: 105 (cGAN with 70x70 PatchGAN)  14 

70 (U-Net) 15 

Generator with 32 as minimum number of feature channels: The number of feature 16 

channels is changed from 3 to 32 during the first encoding step. In the following three 17 

encoding steps, the number of feature channels is doubled (32 – 256), while the subsequent 18 

five are kept at 256. 19 

Total number of parameters: 16.755 M  20 

Training time (s/epoch): AMROA: 100 (cGAN with 70x70 PatchGAN)  21 

75 (U-Net) 22 

Generator with 128 as minimum number of feature channels: In the first encoding step 23 

the number of feature channels is changed from 3 to 128. In the following three encoding 24 

steps, the number of feature channels is doubled (128– 1024), while the subsequent five are 25 

kept at 1024. 26 

Total number of parameters: 267.953 M  27 

Training time (s/epoch): AMROA: 245 (cGAN with 70x70 PatchGAN)  28 

220 (U-Net) 29 

 30 

Discriminator:  31 



70 x 70 PatchGAN: The discriminator network repeatedly down-samples the input by 1 

applying three 4x4 convolutions with stride 2 followed by two 4x4 convolutions with stride 2 

1. Each convolution during down-sampling is followed by a batch normalisation layer 3 

(except the first and last layer) and a leaky ReLU (slope 0.2) (except for the last layer). The 4 

number of feature channels are doubled (64 – 512) during the first four convolutional steps. 5 

The final convolutional layer is proceeded by a Sigmoid activation layer. 6 

Total number of parameters: 2.769 M 7 

1 x 1 PatchGAN (PixelGAN): This PixelGAN discriminator network applies three 1 x 1 8 

convolutions with stride 1, where the first convolution is followed by a leaky ReLU (slope 9 

0.2) , the second  convolution by a batch normalisation layer and a leaky ReLU (slope 0.2) 10 

and the final convolution by a Sigmoid activation function. The number of feature channels 11 

are doubled (64 – 128) during the first two convolutions.  12 

Total number of parameters: 0.009 M 13 

34 x 34 PatchGAN: This network repetitively down-samples the input by using two 4x4 14 

convolutions with stride 2 followed by two 4x4 convolutions with stride 1. Each convolution 15 

is followed by a batch normalisation layer (except the first and last layer) and a leaky ReLU 16 

(slope 0.2) (except for the last layer). The number of feature channels are doubled (64 – 256) 17 

during the first three convolutional steps. The final layer is ensued by a Sigmoid activation 18 

layer. 19 

Total number of parameters: 0.666 M 20 

286 x 286 PatchGAN: This discriminator network consists of eight convolutional layers with 21 

4x4 spatial filters. The first 6 convolutions have stride 2 while the last two have stride 1. Each 22 

convolutional layer is followed by a batch normalisation layer (except the first and last layer) 23 

and a leaky ReLU (slope 0.2) (except for the last layer). The number of feature channels are 24 

doubled (64 – 512) during the first four convolutions and kept at 512 for the ensuing layers. 25 

A Sigmoid activation layer succeeds the final convolution.  26 

Total number of parameters: 11.159 M 27 

 28 

 29 

 30 

 31 
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Tables 1 

Table 1 - Participant characteristics showing the mean age, number of males/females (M/F), 2 

average body-mass-index (BMI), Kellgren-Lawrence (KL) osteoarthritis score and the 3 

number of training/testing set images of the locally acquired dataset. Additionally, the 4 

number of participants (N) and training/testing set images of the SKI10 and OAI ZIB datasets 5 

are given. 6 

Dataset Variable Training Set Testing Set 

Local N 8 2 

 Images 806 171 

 Mean Age (years) 53  52 

 Sex (M/F) 5/3 0/2 

 Mean BMI (kg/m2) 27.8 27.7 

 KL (0/2/3) 4/1/3 1/1/0 

SKI10 N 70 30 

 Images 6133 2626 

OAI ZIB N 355 152 

 Images 43814 18517 
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Table 2 – Results of the Network Objective Function: cGAN. The influence of mixing the cGAN objective with different pixel-wise error losses and varying 1 

their significance by changing the weighting hyperparameter λ on the segmentation performance of the proposed cGAN was assessed. Highest network scores 2 

achieved for each tissue are highlighted grey and in bold.   3 

Training and testing were performed on the AMROA training and testing datasets, respectively.  4 

Results are presented as mean ± standard deviation. 5 

Abbreviations: F Bone – femoral bone, T Bone – tibial bone, P Bone – patellar bone, F Cartilage – femoral cartilage, T Cartilage – tibial cartilage, P Cartilage – 6 
patellar cartilage, VM Muscle -  vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – 7 
posterior cruciate ligament, DSC - Sørensen–Dice similarity coefficient 8 

Network Objective Function Results 

cGAN 

Pixel Loss λ F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

  DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC 

L1 0 0.931 ± 0.020 0.864 ± 0.008 0.911 ± 0.036 0.774 ± 0.030 0.717 ± 0.108 0.872 ± 0.030 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 

 0.01 0.900 ± 0.018 0.890 ± 0.031 0.912 ± 0.002 0.727 ± 0.023 0.715 ± 0.060 0.850 ± 0.048 0.000 ± 0.000 0.000 ± 0.000 0.509 ± 0.009 0.171 ± 0.208 

 1 0.899 ± 0.014 0.856 ± 0.010 0.807 ± 0.060 0.465 ± 0.037 0.666 ± 0.022 0.426 ± 0.098 0.611 ± 0.181 0.595 ± 0.054 0.000 ± 0.000 0.000 ± 0.000 

 100 0.918 ± 0.011 0.948 ± 0.018 0.928 ± 0.002 0.812 ± 0.002 0.748 ± 0.042 0.863 ± 0.043 0.113 ± 0.085 0.000 ± 0.000 0.577 ± 0.020 0.073 ± 0.103 

 10000 0.968 ± 0.006 0.944 ± 0.026 0.917 ± 0.008 0.875 ± 0.021 0.810 ± 0.036 0.840 ± 0.065 0.879 ± 0.036 0.793 ± 0.080 0.432 ± 0.237 0.338 ± 0.386 

L2 0.01 0.902 ± 0.004 0.915 ± 0.003 0.923 ± 0.005 0.750 ± 0.002 0.740 ± 0.079 0.834 ± 0.077 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 

 1 0.902 ± 0.046 0.902 ± 0.008 0.902 ± 0.044 0.741 ± 0.004 0.736 ± 0.033 0.838 ± 0.041 0.000 ± 0.000 0.000 ± 0.000 0.149 ± 0.104 0.002 ± 0.002 

 100 0.928 ± 0.015 0.939 ± 0.007 0.921 ± 0.022 0.768 ± 0.016 0.752 ± 0.049 0.862 ± 0.039 0.001 ± 0.001 0.000 ± 0.000 0.652 ± 0.094 0.101 ± 0.074 

 10000 0.952 ± 0.000 0.950 ± 0.015 0.923 ± 0.001 0.828 ± 0.043 0.684 ± 0.092 0.832 ± 0.054 0.814 ± 0.145 0.856 ± 0.121 0.440 ± 0.084 0.293 ± 0.358 

SmL1 0.01 0.914 ± 0.034 0.902 ± 0.003 0.920 ± 0.011 0.726 ± 0.007 0.729 ± 0.042 0.762 ± 0.068 0.000 ± 0.000 0.000 ± 0.000 0.343 ± 0.066 0.000 ± 0.000 

 1 0.884 ± 0.044 0.912 ± 0.006 0.926 ± 0.013 0.740 ± 0.014 0.732 ± 0.044 0.829 ± 0.067 0.055 ± 0.007 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 

 100 0.903 ± 0.019 0.944 ± 0.006 0.936 ± 0.003 0.776 ± 0.035 0.741 ± 0.066 0.857 ± 0.029 0.031 ± 0.044 0.070 ± 0.100 0.578 ± 0.053 0.044 ± 0.052 

 10000 0.951 ± 0.002 0.946 ± 0.018 0.935 ± 0.015 0.825 ± 0.035 0.738 ± 0.047 0.797 ± 0.088 0.914 ± 0.001 0.837 ± 0.146 0.261 ± 0.073 0.374 ± 0.341 
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Table 3 – Results of the Network Objective Function: U-Net. The influence of different pixel-wise error losses on the segmentation performance of the U-Net 1 

was assessed. Highest network scores achieved for each tissue are highlighted grey and in bold.   2 

Training and testing were performed on the AMROA training and testing datasets, respectively.  3 

Results are presented as mean ± standard deviation. 4 

Abbreviations: F Bone – femoral bone, T Bone – tibial bone, P Bone – patellar bone, F Cartilage – femoral cartilage, T Cartilage – tibial cartilage, P Cartilage – 5 
patellar cartilage, VM Muscle -  vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – 6 
posterior cruciate ligament, DSC - Sørensen–Dice similarity coefficient 7 

Network Objective Function Results 

U-Net 

Pixel Loss F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

 DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC 

L1 0.972 ± 0.006 0.960 ± 0.001 0.941 ± 0.010 0.886 ± 0.007 0.834 ± 0.010 0.890 ± 0.034 0.000 ± 0.000 0.000 ± 0.000 0.643 ± 0.153 0.641 ± 0.008 

L2 0.950 ± 0.007 0.957 ± 0.009 0.939 ± 0.003 0.831 ± 0.020 0.723 ± 0.068 0.837 ± 0.051 0.888 ± 0.000 0.881 ± 0.021 0.491 ± 0.136 0.428 ± 0.196 

SmL1 0.953 ± 0.001 0.953 ± 0.009 0.937 ± 0.004 0.843 ± 0.021 0.771 ± 0.036 0.830 ± 0.088 0.894 ± 0.002 0.910 ± 0.045 0.574 ± 0.230 0.463 ± 0.174 
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Table 4 - Results of additionally testing on noise only images. The influence of including noise only images in the testing set on the overall segmentation 1 

performance of a cGAN trained with 𝓛𝐜𝐆𝐀𝐍 + 𝛌𝓛𝐋𝟏 (𝛌 = 𝟏𝟎𝟎) loss objective and a U-Net trained with 𝓛𝐋𝟏 objective. Training was performed on the AMROA 2 

training dataset without noise only images.  3 

Abbreviations: F Bone – femoral bone, T Bone – tibial bone, P Bone – patellar bone, F Cartilage – femoral cartilage, T Cartilage – tibial cartilage, P Cartilage – 4 
patellar cartilage, VM Muscle -  vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – 5 
posterior cruciate ligament, DSC - Sørensen–Dice similarity coefficient, %-Diff – absolute percentage difference 6 

Influence of Noise Only Images 

cGAN 

Testing F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

 DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC 

No Noise 0.918 ± 0.011 0.948 ± 0.018 0.928 ± 0.002 0.812 ± 0.002 0.748 ± 0.042 0.863 ± 0.043 0.113 ± 0.085 0.000 ± 0.000 0.577 ± 0.020 0.073 ± 0.103 

With Noise 0.925 ± 0.012 0.946 ± 0.017 0.928 ± 0.004 0.810 ± 0.003 0.752 ± 0.045 0.858 ± 0.054 0.098 ± 0.114 0.000 ± 0.000 0.593 ± 0.028 0.092 ± 0.131 

%-Diff 0.7 0.2 0.0 0.2 0.4 0.5 1.5 0.0 1.6 1.9 

U-Net 

Testing F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

 DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC 

No Noise 0.972 ± 0.006 0.960 ± 0.001 0.941 ± 0.010 0.886 ± 0.007 0.834 ± 0.010 0.890 ± 0.034 0.000 ± 0.000 0.000 ± 0.000 0.643 ± 0.153 0.641 ± 0.008 

With Noise 0.968 ± 0.001 0.957 ± 0.009 0.938 ± 0.016 0.885 ± 0.004 0.833 ± 0.010 0.894 ± 0.026 0.000 ± 0.000 0.000 ± 0.000 0.620 ± 0.156 0.643 ± 0.025 

%-Diff 0.4 0.3 0.3 0.1 0.1 0.4 0.0 0.0 2.3 0.2 
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Table 5 – Results of Altering the Loss Objective during Training. Assessing the influence of altering the loss objective function during training on the 2 
segmentation performance of the proposed cGAN and U-Net. A cGAN was trained with 𝓛𝐜𝐆𝐀𝐍 + 𝛌𝓛𝐋𝟐 objective and a U-Net with 𝓛𝐋𝟐 objective for 50 epochs 3 
followed by a further 50 epochs training with 𝓛𝐜𝐆𝐀𝐍 + 𝛌𝓛𝐋𝟏 and 𝓛𝐋𝟏 objectives, respectively. Segmentation performances are compared with the previously 4 
trained cGANs (𝓛𝐜𝐆𝐀𝐍 + 𝛌𝓛𝐋𝟏𝐚𝐧𝐝 𝓛𝐜𝐆𝐀𝐍 + 𝛌𝓛𝐋𝟐; 𝛌 = 𝟏𝟎𝟎; 100 epochs) and U-Nets (𝓛𝐋𝟏𝐚𝐧𝐝 𝓛𝐋𝟐;100 epochs). Highest network scores achieved for each tissue 5 
are highlighted grey and in bold.   6 
Training and testing were performed on the AMROA training and testing datasets, respectively.  7 
Abbreviations: FB – femoral bone, TB – tibial bone, PB – patellar bone, FC – femoral cartilage, TC – tibial cartilage, PC – patellar cartilage, VM Muscle -  vastus 8 
medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate ligament, DSC - 9 
Sørensen–Dice similarity coefficient 10 

Altering the Loss Objective during Training Results 

cGAN 

Network Loss F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

Objective DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC 

ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 0.918 ± 0.011 0.948 ± 0.018 0.928 ± 0.002 0.812 ± 0.002 0.748 ± 0.042 0.863 ± 0.043 0.113 ± 0.085 0.000 ± 0.000 0.577 ± 0.020 0.073 ± 0.103 

ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿2 0.928 ± 0.015 0.939 ± 0.007 0.921 ± 0.022 0.768 ± 0.016 0.752 ± 0.049 0.862 ± 0.039 0.001 ± 0.001 0.000 ± 0.000 0.652 ± 0.094 0.101 ± 0.074 

ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿2 → 

ℒ𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1 
0.936 ± 0.007 0.938 ± 0.021 0.884 ± 0.078 0.800 ± 0.021 0.760 ± 0.035 0.855 ± 0.031 0.739 ± 0.010 0.772 ± 0.005 0.115 ± 0.032 0.392 ± 0.128 

U-Net 

Network Loss F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

Objective DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC 

ℒ𝐿1 0.972 ± 0.006 0.960 ± 0.001 0.941 ± 0.010 0.886 ± 0.007 0.834 ± 0.010 0.890 ± 0.034 0.000 ± 0.000 0.000 ± 0.000 0.643 ± 0.153 0.641 ± 0.008 

ℒ𝐿2 0.950 ± 0.007 0.957 ± 0.009 0.939 ± 0.003 0.831 ± 0.020 0.723 ± 0.068 0.837 ± 0.051 0.888 ± 0.000 0.881 ± 0.021 0.491 ± 0.136 0.428 ± 0.196 

ℒ𝐿2 → ℒ𝐿1 0.970 ± 0.006 0.961 ± 0.007 0.941 ± 0.003 0.869 ± 0.016 0.793 ± 0.021 0.886 ± 0.027 0.914 ± 0.008 0.933 ± 0.010 0.632 ± 0.170 0.567 ± 0.094 
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Table 6 – Results of Varying Generator Network Depth: Number of Convolutions. The influence of varying the number of convolutions during down-1 

sampling in the generator networks of both the cGAN and U-Net was assessed. Highest network scores achieved for each tissue are highlighted grey and in bold.   2 

Training and testing were performed on the AMROA training and testing datasets, respectively.  3 

Results are presented as mean ± standard deviation. 4 

Abbreviations: F Bone – femoral bone, T Bone – tibial bone, P Bone – patellar bone, F Cartilage – femoral cartilage, T Cartilage – tibial cartilage, P Cartilage – 5 
patellar cartilage, VM Muscle -  vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – 6 
posterior cruciate ligament, DSC - Sørensen–Dice similarity coefficient 7 

Generator Network Depth Results – Number of Convolutions during Down-Sampling 

cGAN 

Number F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

Down Convs DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC 

5 0.928 ± 0.006 0.929 ± 0.006 0.893 ± 0.029 0.721 ± 0.029 0.751 ± 0.039 0.838 ± 0.042 0.049 ± 0.069 0.000 ± 0.000 0.622 ± 0.042 0.286 ± 0.189 

7 0.889 ± 0.023 0.921 ± 0.026 0.928 ± 0.002 0.764 ± 0.047 0.624 ± 0.039 0.846 ± 0.057 0.171 ± 0.226 0.167 ± 0.236 0.626 ± 0.041 0.289 ± 0.408 

9 0.918 ± 0.011 0.948 ± 0.018 0.928 ± 0.002 0.812 ± 0.002 0.748 ± 0.042 0.863 ± 0.043 0.113 ± 0.085 0.000 ± 0.000 0.577 ± 0.020 0.073 ± 0.103 

U-Net 

5 0.969 ± 0.002 0.952 ± 0.016 0.919 ± 0.022 0.887 ± 0.018 0.823 ± 0.001 0.888 ± 0.031 0.000 ± 0.000 0.000 ± 0.000 0.631 ± 0.125 0.544 ± 0.249 

7 0.964 ± 0.003 0.956 ± 0.005 0.921 ± 0.008 0.874 ± 0.032 0.787 ± 0.044 0.869 ± 0.029 0.000 ± 0.000 0.000 ± 0.000 0.539 ± 0.160 0.592 ± 0.120 

9 0.972 ± 0.006 0.960 ± 0.001 0.941 ± 0.010 0.886 ± 0.007 0.834 ± 0.010 0.890 ± 0.034 0.000 ± 0.000 0.000 ± 0.000 0.643 ± 0.153 0.641 ± 0.008 
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Table 7 - Results of Varying Generator Network Depth: Number of Minimum Feature Maps. The influence of starting with different numbers of minimum 1 

feature channel maps in the generator networks of both the cGAN and U-Net was assessed. Highest network scores achieved for each tissue are highlighted grey 2 

and in bold.   3 

Training and testing were performed on the AMROA training and testing datasets, respectively.  4 

Results are presented as mean ± standard deviation. 5 

Abbreviations: F Bone – femoral bone, T Bone – tibial bone, P Bone – patellar bone, F Cartilage – femoral cartilage, T Cartilage – tibial cartilage, P Cartilage – 6 
patellar cartilage, VM Muscle -  vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – 7 
posterior cruciate ligament, DSC - Sørensen–Dice similarity coefficient 8 

Generator Network Depth Results – Number of Minimum Feature Channel Maps 

cGAN 

Feature F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

Maps DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC 

16 0.774 ± 0.059 0.903 ± 0.040 0.858 ± 0.003 0.547 ± 0.236 0.473 ± 0.269 0.771 ± 0.070 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 

32 0.899 ± 0.004 0.937 ± 0.001 0.875 ± 0.027 0.750 ± 0.028 0.720 ± 0.038 0.831 ± 0.030 0.414 ± 0.260 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 

64 0.918 ± 0.011 0.948 ± 0.018 0.928 ± 0.002 0.812 ± 0.002 0.748 ± 0.042 0.863 ± 0.043 0.113 ± 0.085 0.000 ± 0.000 0.577 ± 0.020 0.073 ± 0.103 

128 0.925 ± 0.006 0.935 ± 0.021 0.831 ± 0.032 0.805 ± 0.010 0.773 ± 0.081 0.784 ± 0.061 0.341 ± 0.256 0.000 ± 0.000 0.336 ± 0.219 0.011 ± 0.016 

U-Net 

16 0.966 ± 0.000 0.950 ± 0.021 0.912 ± 0.028 0.868 ± 0.011 0.795 ± 0.001 0.864 ± 0.028 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.202 ± 0.110 

32 0.969 ± 0.006 0.946 ± 0.016 0.914 ± 0.005 0.875 ± 0.026 0.795 ± 0.051 0.878 ± 0.032 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.453 ± 0.039 

64 0.972 ± 0.006 0.960 ± 0.001 0.941 ± 0.010 0.886 ± 0.007 0.834 ± 0.010 0.890 ± 0.034 0.000 ± 0.000 0.000 ± 0.000 0.643 ± 0.153 0.641 ± 0.008 

128 0.968 ± 0.006 0.960 ± 0.004 0.929 ± 0.014 0.884 ± 0.022 0.823 ± 0.010 0.897 ± 0.013 0.000 ± 0.000 0.000 ± 0.000 0.645 ± 0.053 0.597 ± 0.025 



Table 8 – Results of PatchGAN Receptive Field Size. Comparison of segmentation performance of the proposed cGAN with different N x N receptive field 1 

sizes of the PatchGAN discriminator network. Highest network scores achieved for each tissue are highlighted grey and in bold.   2 

The cGANs were trained with the 𝓛𝐜𝐆𝐀𝐍 + 𝛌𝓛𝐋𝟏objective with λ = 100 with training and testing being performed on the AMROA dataset.  3 

Abbreviations: FB – femoral bone, TB – tibial bone, PB – patellar bone, FC – femoral cartilage, TC – tibial cartilage, PC – patellar cartilage, VM Muscle -  4 
vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate ligament, DSC 5 
- Sørensen–Dice similarity coefficient 6 

PatchGAN Receptive Field Size Results 

Receptive  F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

Field Size DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC 

1 x 1 0.971 ± 0.005 0.953 ± 0.012 0.947 ± 0.007 0.849 ± 0.046 0.804 ± 0.024 0.869 ± 0.053 0.812 ± 0.066 0.869 ± 0.069 0.618 ± 0.140 0.613 ± 0.143 

34 x 34 0.968 ± 0.007 0.952 ± 0.015 0.941 ± 0.013 0.849 ± 0.002 0.795 ± 0.013 0.868 ± 0.023 0.883 ± 0.007 0.876 ± 0.009 0.621 ± 0.096 0.594 ± 0.118 

70 x 70 0.918 ± 0.011 0.948 ± 0.018 0.928 ± 0.002 0.812 ± 0.002 0.748 ± 0.042 0.863 ± 0.043 0.113 ± 0.085 0.000 ± 0.000 0.577 ± 0.020 0.073 ± 0.103 

286 x 286 0.941 ± 0.000 0.938 ± 0.008 0.920 ± 0.012 0.766 ± 0.020 0.731 ± 0.003 0.767 ± 0.049 0.702 ± 0.022 0.597 ± 0.078 0.383 ± 0.090 0.070 ± 0.022 
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Table 9 – Results of Transfer Learning. Comparison of segmentation performance of the proposed cGAN and U-Net without and with transfer learning and testing on the 1 
SKI10 and OAI ZIB testing dataset. Highest network scores achieved for each tissue are highlighted grey and in bold.   2 

SKI10/OAI ZIB → AMROA: Pretraining the network for 20 epochs on the SKI10/OAI ZIB dataset followed by network fine-tuning for 80 epochs on the AMROA dataset.  3 

AMROA → SKI10/OAI ZIB: Pretraining the network for 20 epochs on the AMROA dataset followed by network fine-tuning for 80 epochs on the SKI10/OAI ZIB dataset.  4 
Abbreviations: FB – femoral bone, TB – tibial bone, FC – femoral cartilage, TC – tibial cartilage, DSC - Sørensen–Dice similarity coefficient, ASD – average surface distance, 5 
VOE – volumetric overlap error 6 

Transfer Learning Results  

SKI10 Testing 

Network Training F Bone T Bone F Cartilage T Cartilage 

    DSC ASD DSC ASD DSC VOE DSC VOE 

cGAN 

AMROA 0.929 ± 0.040 3.726 ± 1.758 0.893 ± 0.069 3.368 ± 1.935 0.488 ± 0.093 67.19 ± 8.36 0.465 ± 0.114 69.01 ± 10.00 

SKI10 0.974 ± 0.013 1.445 ± 1.918 0.979 ± 0.007 0.527 ± 0.403 0.736 ± 0.058 41.49 ± 6.99 0.684 ± 0.070 47.58 ± 7.98 

SKI10 → 

AMROA 
0.938 ± 0.039 3.229 ± 1.776 0.929 ± 0.041 2.696 ± 2.326 0.544 ± 0.077 62.23 ± 7.45 0.480 ± 0.100 67.86 ± 8.89 

AMROA → 

SKI10 
0.974 ± 0.012 1.280 ± 1.484 0.977 ± 0.010 0.802 ± 1.139 0.738 ± 0.059 41.19 ± 7.08 0.675 ± 0.071 48.65 ± 7.94 

U-Net 

AMROA 0.925 ± 0.038 1.856 ± 0.997 0.907 ± 0.055 1.868 ± 1.336 0.545 ± 0.082 62.16 ± 7.62 0.462 ± 0.112 69.26 ± 9.86 

SKI10 0.973 ± 0.015 0.756 ± 0.995 0.978 ± 0.008 0.254 ± 0.340 0.728 ± 0.058 42.42 ± 6.88 0.674 ± 0.066 48.85 ± 7.55 

SKI10 → 

AMROA 
0.943 ± 0.032 1.071 ± 0.682 0.936 ± 0.038 1.436 ± 1.083 0.576 ± 0.078 59.18 ± 7.86 0.456 ± 0.115 69.76 ± 9.93 

AMROA → 

SKI10 
0.975 ± 0.013 0.440 ± 0.492 0.979 ± 0.007 0.258 ± 0.288 0.731 ± 0.056 42.08 ± 6.74 0.670 ± 0.070 49.19 ± 7.84 

OAI ZIB Testing 

cGAN 

AMROA 0.939 ± 0.016 4.153 ± 1.962 0.914 ± 0.080 4.681 ± 3.197 0.611 ± 0.068 55.66 ± 7.10 0.601 ± 0.089 56.44 ± 9.14 

OAI ZIB 0.985 ± 0.002 0.328 ± 0.123 0.985 ± 0.003 0.293 ± 0.072 0.895 ± 0.023 18.92 ± 3.64 0.839 ± 0.040 27.55 ± 5.90 

OAI ZIB → 

AMROA 
0.961 ± 0.009 1.786 ± 1.202 0.961 ± 0.018 4.426 ± 2.902 0.641 ± 0.071 52.41 ± 7.87 0.738 ± 0.055 41.23 ± 6.70 

AMROA → 

OAI ZIB 
0.985 ± 0.002 0.403 ± 0.268 0.985 ± 0.003 0.293 ± 0.068 0.897 ± 0.022 18.68 ± 3.57 0.837 ± 0.042 27.82 ± 6.19 

U-Net 

AMROA 0.934 ± 0.015 5.424 ± 2.799 0.915 ± 0.094 6.282 ± 3.647 0.643 ± 0.065 52.26 ± 7.03 0.626 ± 0.063 54.12 ± 6.74 

OAI ZIB 0.985 ± 0.002 0.388 ± 0.169 0.984 ± 0.003 0.304 ± 0.079 0.896 ± 0.020 18.83 ± 3.19 0.837 ± 0.038 27.80 ± 5.57 

OAI ZIB → 

AMROA 
0.966 ± 0.006 1.244 ± 0.791 0.961 ± 0.017 1.880 ± 1.133 0.734 ± 0.046 41.83 ± 5.82 0.741 ± 0.058 40.83 ± 6.97 

AMROA → 

OAI ZIB 
0.985 ± 0.002 0.390 ± 0.361 0.985 ± 0.003 0.327 ± 0.127 0.893 ± 0.023 19.24 ± 3.64 0.838 ± 0.037 27.75 ± 5.50 



Table 10 – Results of Transfer Learning. Comparison of segmentation performance of the proposed cGAN and U-Net without and with transfer learning and testing on the 1 
AMROA testing dataset. Highest network scores achieved for each tissue are highlighted grey and in bold.   2 

SKI10/OAI ZIB → AMROA: Pretraining the network for 20 epochs on the SKI10/OAI ZIB dataset followed by network fine-tuning for 80 epochs on the AMROA dataset.  3 

AMROA → SKI10/OAI ZIB: Pretraining the network for 20 epochs on the AMROA dataset followed by network fine-tuning for 80 epochs on the SKI10/OAI ZIB dataset.  4 
Abbreviations: FB – femoral bone, TB – tibial bone, PB – patellar bone, FC – femoral cartilage, TC – tibial cartilage, PC – patellar cartilage, VM Muscle -  vastus medialis 5 
muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate ligament, DSC - Sørensen–Dice similarity 6 
coefficient  7 

Transfer Learning Results - AMROA Testing 

Network Training F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

  DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC 

cGAN 

AMROA 0.971 ± 0.005 0.953 ± 0.012 0.947 ± 0.007 0.849 ± 0.046 0.804 ± 0.024 0.869 ± 0.053 0.812 ± 0.066 0.869 ± 0.069 0.618 ± 0.140 0.613 ± 0.143 

SKI10 0.940 ± 0.024 0.947 ± 0.013  0.735 ± 0.005 0.561 ± 0.190      

OAI ZIB 0.962 ± 0.009 0.951 ± 0.010  0.817 ± 0.032 0.790 ± 0.014      

SKI10 → 

AMROA 
0.970 ± 0.008 0.961 ± 0.004 0.940 ± 0.001 0.871 ± 0.029 0.774 ± 0.039 0.858 ± 0.038 0.922 ± 0.037 0.897 ± 0.057 0.586 ± 0.043 0.468 ± 0.186 

OAI ZIB → 

AMROA 
0.972 ± 0.003 0.962 ± 0.001 0.947 ± 0.001 0.875 ± 0.026 0.811 ± 0.042 0.879 ± 0.022 0.908 ± 0.053 0.909 ± 0.077 0.664 ± 0.058 0.652 ± 0.112 

AMROA → 

SKI10 
0.954 ± 0.015 0.949 ± 0.005  0.761 ± 0.025 0.544 ± 0.085      

AMROA → 

OAI ZIB 
0.960 ± 0.007 0.951 ± 0.012  0.821 ± 0.042 0.815 ± 0.015      

U-Net 

AMROA 0.972 ± 0.006 0.960 ± 0.001 0.941 ± 0.010 0.886 ± 0.007 0.834 ± 0.010 0.890 ± 0.034 0.000 ± 0.000 0.000 ± 0.000 0.643 ± 0.153 0.641 ± 0.008 

SKI10 0.937 ± 0.031 0.944 ± 0.026  0.754 ± 0.009 0.637 ± 0.044      

OAI ZIB 0.959 ± 0.003 0.953 ± 0.010  0.820 ± 0.026 0.798 ± 0.012      

SKI10 → 

AMROA 
0.974 ± 0.003 0.965 ± 0.000 0.947 ± 0.004 0.879 ± 0.012 0.815 ± 0.016 0.896 ± 0.031 0.000 ± 0.000 0.000 ± 0.000 0.665 ± 0.114 0.000 ± 0.000 

OAI ZIB → 

AMROA 
0.973 ± 0.004 0.964 ± 0.005 0.948 ± 0.005 0.893 ± 0.010 0.817 ± 0.043 0.898 ± 0.011 0.000 ± 0.000 0.000 ± 0.000 0.648 ± 0.104 0.000 ± 0.000 

AMROA → 

SKI10 
0.950 ± 0.031 0.959 ± 0.002  0.758 ± 0.010 0.681 ± 0.009      

AMROA → 

OAI ZIB 
0.962 ± 0.006 0.951 ± 0.010  0.813 ± 0.032 0.790 ± 0.039      

 8 

 9 



Figures 1 

Figure 1 – Conditional GAN structure. The generator is a U-Net that progressively down-2 

samples / encodes and then up-samples / decodes an input by a series of convolutional layers, 3 

with additional skip-connections between each major layer. The generated, ’fake’ 4 

segmentation image is then fed together with the ground truth segmentation image into a 5 

discriminator network (PatchGAN (Isola et al., 2017)) that gives its prediction of whether the 6 

generated image is a ‘real’ representation of the ground truth image, or not. A detailed 7 

description of the network architecture can be found in the Appendix.   8 
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Figure 2 – Results of Network Objective Function. Qualitative results of B) training a 1 
cGAN with different objective functions by combining the cGAN loss with different pixel-2 
wise error losses with varying weightings and C) training a U-Net with different pixel-wise 3 
error losses.  4 

  5 



Figure 3 - Results of testing on noise only images. Assessing the segmentation performance 1 
of a cGAN trained with 𝓛𝐜𝐆𝐀𝐍 + 𝛌𝓛𝐋𝟏 (𝛌 = 𝟏𝟎𝟎) loss objective and a U-Net trained with 2 
𝓛𝐋𝟏 objective and tested on noise only images. Training was performed on the AMROA 3 
training dataset without noise only images. A) and B) are two example results of testing the 4 
models on noise only source images and comparing to ground truth segmentation maps. 5 
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Figure 4 – Results of Altering the Loss Objective during Training. Assessing the 1 
influence of varying the objective function halfway during cGAN and U-Net training on their 2 
segmentation performance with comparison to the respective cGANs and U-Nets trained with 3 
constant loss function. 4 
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Figure 5 - Influence of altering the loss objective during cGAN training on the segmentation 1 

performance of the medial gastrocnemius and vastus muscles.  2 

The cGAN was trained with a ℒcGAN + λℒL2 loss objective for 50 epochs followed by a 3 

further 50 epochs training with ℒcGAN + λℒL1. 4 

Abbreviations: VMM - vastus medialis muscle, GMM – medial head of gastrocnemius 5 

muscle, DSC – Dice Similarity Coefficient 6 
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Figure 6 – Results of PatchGAN Receptive Field Size. Assessing the influence of varying 1 
the discriminator receptive field size on segmentation performance of cGAN when trained 2 
and tested on the AMROA dataset. 3 

 4 

 5 

 6 

Figure 7 – Image Artefact due to the choice of PatchGAN Receptive Field Size. Influence 7 
of discriminator receptive field size on checkerboard artefact emergence of a cGAN trained 8 
and tested on the AMROA dataset. 9 
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Figure 8 – Loss Evolution during cGAN Training. The loss evolutions of the A) generator 1 

(𝓛𝒄𝑮𝑨𝑵 and 𝓛𝑳𝟏) and B) discriminator (𝓛𝒓𝒆𝒂𝒍 and 𝓛𝒇𝒂𝒌𝒆) are shown for a cGAN trained with a 2 

U-Net generator and a 1x1 PatchGAN discriminator for 100 epochs.  3 
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Figure 9 - Results of Transfer Learning: SKI10 and OAI ZIB. Assessing the influence of 1 

transfer learning on segmentation performance of cGAN and U-Net when tested on the 2 

SKI10 and OAI ZIB test datasets.  3 

SKI10 / OAI ZIB → AMROA: Pretraining the network for 20 epochs on the SKI10 / OAI 4 

ZIB training dataset followed by network fine-tuning for 80 epochs on the AMROA training 5 

dataset.  6 

AMROA → SKI10 / OAI ZIB: Pretraining the network for 20 epochs on the AMROA 7 

training dataset followed by network fine-tuning for 80 epochs on the SKI10 / OAI ZIB 8 

training dataset.  9 
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Figure 10 - Results of Transfer Learning: AMROA. Assessing the influence of transfer 1 

learning on segmentation performance of cGAN and U-Net when tested on the AMROA test 2 

datasets.  3 

SKI10 / OAI ZIB → AMROA: Pretraining the network for 20 epochs on the SKI10 / OAI 4 

ZIB training dataset followed by network fine-tuning for 80 epochs on the AMROA training 5 

dataset.  6 

AMROA → SKI10 / OAI ZIB: Pretraining the network for 20 epochs on the AMROA 7 

training dataset followed by network fine-tuning for 80 epochs on the SKI10 / OAI ZIB 8 

training dataset.  9 
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