92 research outputs found

    The study of structural, morphological and optical properties of (Al, Ga)-doped ZnO: DFT and experimental approaches

    Get PDF
    ZnO is a widely studied material for several applications, such as a photocatalyst, a working electrode for dye-sensitized solar cells, and for thermoelectric devices. This work studies the effects of an increase in the number of carriers by doping ZnO with Al and Ga. The 6.25 mol% Al-doped ZnO, 6.25 mol% Ga-doped ZnO, and 12.5 mol% (Al, Ga)-co-doped ZnO nanoparticles were prepared using the combustion method. The prepared samples were then characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and UV–visible spectroscopy techniques. Moreover, the density functional theory (DFT) was also employed for computational study of Al and Ga doped ZnO. Optimized crystal structures, density of states (DOS) and band structure of these systems were calculated using Vienna Ab initio Simulation Package code. From this study, Al and Ga are found to play an important role in both the morphology and optical properties of the ZnO: Al and Ga doping can change the band gap and the Fermi level position in the ZnO. The prepared samples were characterized for their thermoelectric properties, and these were also modelled, using BolzTraP code, for ZnO, Al-doped ZnO, Ga-doped ZnO and (Al, Ga)-co-doped ZnO. The Seebeck coefficient, electrical conductivity, relaxation time, electronic thermal conductivity and power factor were all analysed. The experimental and computational results all point in the same direction, indicating that the thermoelectric properties of ZnO change because the semiconductor ZnO transforms into metallic ZnO when doped with Al and Ga. This leads to ZnO showing different thermoelectric properties, particularly Ga-doped ZnO and (Al, Ga)-co doped ZnO: they provide a high electrical conductivity and power factor. Therefore, it is expected that these favorable properties might promote the ZnO to be a potential candidate for improved efficiency thermoelectric devices

    Hybrid density functional study of electronic and optical properties of phase change memory material: Ge2Sb2Te5\mathrm{Ge_{2}Sb_{2}Te_{5}}

    Full text link
    In this article, we use hybrid density functional (HSE06) to study the crystal and electronic structures and optical properties of well known phase change memory material Ge2Sb2Te5\mathrm{Ge_{2}Sb_{2}Te_{5}}. We calculate the structural parameters, band gaps and dielectric functions of three stable structures of this material. We also analyze the electron charge distribution using the Bader's theory of charge analysis. We find that hybrid density functional slightly overestimate the value of 'C' parameter. However, overall, our results calculated with the use of hybrid density functional (HSE06) are very close to available experimental values than calculated with the use of PBE functional. Specifically, the electronic band gap values of this material calculated with HSE06 are in good agreement with the available experimental data in the literature. Furthermore, we perform the charge analysis and find that naive ionic model fails to explain the charge distribution between the constituent atoms, showing the complex nature of this compound.Comment: 10 pages, 3 tables, 3 figure

    Strong electron-phonon coupling and predicted highest known TcT_{c} of MXenes revealed in 2H-Mo2_{2}N under biaxial stress

    Full text link
    Superconducting Mo-based MXenes have been intensively investigated because they process the superior TcT_c values compared to other MXenes. This letter reports the unexpectedly strong electron-phonon coupling (EPC) and the highest TcT_c record (≈\approx 52 K) among the MXenes revealed in the 2H-Mo2_2N under biaxial stress. At first, its excellent mechanical properties, including high ideal strength and elastic modulus, are demonstrated. Subsequently, EPC and corresponding TcT_c are elucidated upon the dynamically stable range of strain. For strain-free 2H-Mo2_2N, the EPC constant (λ\lambda) and TcT_c are 1.3 and 22.7 K, respectively. The material exhibits remarkable enhancement in λ\lambda and TcT_c when subject to compressive and tensile stresses. The λ\lambda is approximately 2.2 at strains of -2.5% and 5%, yielding TcT_cs of 52.1 and 25.3 K, respectively. Our findings suggest that the strain-dependent feature and energy levels of electronic bands play an essential role in enhancing EPC in 2H-Mo2_2N. This work paves the way for designing the MXene-based superconducting materials using strain engineering.Comment: 6 pages, 4 Figure

    Identification of Selected Persistent Organic Pollutants in Agricultural Land by Carbon Nitride (C3N5) Based Nano Sensors

    Get PDF
    Efficient detection of selected persistent organic pollutants (POPs) is extremely important for the safety of humans and for the moderation of agriculture. This calls for the design of versatile nanosensors capable of sensing toxic POPs with high sensitivity and selectivity. Inspired by this, the sensing characteristics of carbon nitride (C3N5) monolayers toward selected POPs are reported, such as Dichlorodiphenyltrichloroethane (DDT), Methoxychlor (DMDT), Fenthion (FT), Fenitrothion (FNT), and Rennol (RL), employing density functional theory calculations. Analysis of results predicts adsorption energies of −0.93, −1.55, −1.44, −0.98, and −1.15 eV for DDT, DMDT, FT, FNT, and RM, respectively, on C3N5 monolayers. Significant charge transfers among organic pollutants and C3N5 lead to distinct electronic properties of the conjugated complexes, revealed by the density of states, electrostatic potential, and work function calculations. To detect the selected pollutants in high humidity, the effects due to aqueous medium are considered. Additionally, a statistical thermodynamic analysis utilizing the Langmuir adsorption model is utilized to explore the influence of temperature and pressure

    Improved Thermoelectric Properties of SrTiO3 via (La, Dy and N) Co-Doping: DFT Approach

    Get PDF
    This work considers the enhancement of the thermoelectric figure of merit, ZT, of SrTiO3 (STO) semiconductors by (La, Dy and N) co-doping. We have focused on SrTiO3 because it is a semiconductor with a high Seebeck coefficient compared to that of metals. It is expected that SrTiO3 can provide a high power factor, because the capability of converting heat into electricity is proportional to the Seebeck coefficient squared. This research aims to improve the thermoelectric performance of SrTiO3 by replacing host atoms by La, Dy and N atoms based on a theoretical approach performed with the Vienna Ab Initio Simulation Package (VASP) code. Here, undoped SrTiO3 , Sr0.875La0.125TiO3 , Sr0.875Dy0.125TiO3 , SrTiO2.958N0.042, Sr0.750La0.125Dy0.125TiO3 and Sr0.875La0.125TiO2.958N0.042 are studied to investigate the influence of La, Dy and N doping on the thermoelectric properties of the SrTiO3 semiconductor. The undoped and La-, Dy- and N-doped STO structures are optimized. Next, the density of states (DOS), band structures, Seebeck coefficient, electrical conductivity per relaxation time, thermal conductivity per relaxation time and figure of merit (ZT) of all the doped systems are studied. From first-principles calculations, STO exhibits a high Seebeck coefficient and high figure of merit. However, metal and nonmetal doping, i.e., (La, N) co-doping, can generate a figure of merit higher than that of undoped STO. Interestingly, La, Dy and N doping can significantly shift the Fermi level and change the DOS of SrTiO3 around the Fermi level, leading to very different thermoelectric properties than those of undoped SrTiO3 . All doped systems considered here show greater electrical conductivity per relaxation time than undoped STO. In particular, (La, N) co-doped STO exhibits the highest ZT of 0.79 at 300 K, and still a high value of 0.77 at 1000 K, as well as high electrical conductivity per relaxation time. This renders it a viable candidate for high-temperature applications

    The quantum confined Stark effect in N-doped ZnO/ZnO/N-doped ZnO nanostructures for infrared and terahertz applications

    Get PDF
    The terahertz (THz) frequency range is very important in various practical applications, such as terahertz imaging, chemical sensing, biological sensing, high-speed telecommunications, security, and medical applications. Based on the density functional theory (DFT), this work presents electronic and optical properties of N-doped ZnO/ZnO/N-doped ZnO quantum well and quantum wire nanostructures. The density of states (DOS), the band structures, effective masses, and the band offsets of ZnO and N-doped ZnO were calculated as the input parameters for the subsequent modeling of the ZnO/N-doped ZnO heterojunctions. The results show that the energy gaps of the component materials are different, and the conduction and valence band offsets at the ZnO/N-doped ZnO heterojunction give type-II alignment. Furthermore, the optical characteristics of N-doped ZnO/ZnO/N-doped ZnO quantum well were studied by calculating the absorption coefficient from transitions between the confined states in the conduction band under the applied electric field (Stark effect). The results indicate that N-doped ZnO/ZnO/ N-doped ZnO quantum wells, quantum wires, and quantum cascade structures could offer the absorption spectrum tunable in the THz range by varying the electric field and the quantum system size. Therefore, our work indicates the possibility of using ZnO as a promising candidate for infrared and terahertz applications

    On the photoluminescence changes induced by ageing processes on zinc white paints

    Get PDF
    Recent research is focusing on the study of interaction mechanisms between pigments and binders, as they are crucial for understanding paint ageing and conservation issues. In this work, we investigate these mechanisms and follow the changes induced by ageing on zinc white paint by employing Fourier Transform Infrared (FTIR) and Time-Resolved Photoluminescence (TRPL) spectroscopies. The two techniques, applied on thermally aged mock-up samples and on a 19th oil painting, provide complementary information on the effect of the binder on the ZnO pigment particles. The characterization of the infrared absorption spectra confirms the well-known tendency of amorphous metal carboxylate formation in zinc white paint following ageing. At the same time, the ageing of paint film produces significant changes in the photoluminescence emission from defect centres of ZnO. The emission that is mostly affected by the changes of the micro-environment is the blue band (430 nm) – associated with surface defects – whereas the green emission (530 nm) is stable. The results demonstrate that the evolution of the pigment-binder system has detectable consequences on the crystalline structure of the pigment particles and we speculate that the main cause of these modifications is the functionalization of the pigment particle surfaces. The possibility to follow crystal structure changes with time-resolved photoluminescence can thus support chemical studies on metal carboxylate formation and paint deterioration by providing information about pigment-binder interactions

    First-Principles Studies of Materials Properties : Pressure-Induced Phase Transitions & Functional Materials

    No full text
    This thesis presents the first-principles studies of materials properties within the framework of the density functional theory (DFT). The thesis constitutes three main parts, i. e., pressure-induced phase transitions in solids, data-storage and clean-energy materials. The first part focuses on the predictions of crystal structures and the determinations of electronic properties of Xe-H2, FeB4 and Co3O4. Pressurizing Xe-H2 compound yields the formation of H-rich Xe(H2)8, which can exhibit a metallic feature at comparatively lower pressure than pure hydrogen. Hard superconducting FeB4 gets transformed into a novel transparent phase under pressure owing to the enhanced overlap of atomic cores. Spinel Co3O4 undergoes the phase transition from a cubic to a monoclinic because of the charge transfer between cations via the increased 3d-3d interactions. The second part involves the study of structural and electronic properties of phase-change memory materials (PCMs), i. e., Ge2Sb2Te5 (GST) and Ga-doped In2O3. Van der Waals (vdW) interaction must be considered to obtain accurate crystal structure of layered GST. For Ga-doped In2O3 (GIO), the local structure of amorphous GIO is found to resemble that of amorphous In2O3, except the vicinity of doping atoms. The electronic property of a-GIO is metallic, which considerably differs from the semiconducting feature of the crystalline GIO. This emphasizes the contrast in the conductivity of the crystalline and amorphous upon phase switching of GIO. The third part associates with the search for clean-energy materials, viz., hydrogen production, hydrogen storage and green Mg-ion batteries. For hydrogen production, the role of intrinsic point defects to water adsorption on ZnO(10-10) surface is investigated. The findings show that the Zn and O defect-sites are energetically not favorable for the water adsorption and dissociation. For the purpose of storing hydrogen in a solid phase, silicene, doped by alkaline and alkaline earth metals, is investigated. We find that Li-doped and Na-doped silicene can attain the superior storage capacity. For cathode material of Mg-ion batteries, Mg2Mo6S8, the diffusivity of Mg ions occurs through an available channel in the bulk with the onset temperature of 200 K

    First-Principles Studies of Materials Properties : Pressure-Induced Phase Transitions & Functional Materials

    No full text
    This thesis presents the first-principles studies of materials properties within the framework of the density functional theory (DFT). The thesis constitutes three main parts, i. e., pressure-induced phase transitions in solids, data-storage and clean-energy materials. The first part focuses on the predictions of crystal structures and the determinations of electronic properties of Xe-H2, FeB4 and Co3O4. Pressurizing Xe-H2 compound yields the formation of H-rich Xe(H2)8, which can exhibit a metallic feature at comparatively lower pressure than pure hydrogen. Hard superconducting FeB4 gets transformed into a novel transparent phase under pressure owing to the enhanced overlap of atomic cores. Spinel Co3O4 undergoes the phase transition from a cubic to a monoclinic because of the charge transfer between cations via the increased 3d-3d interactions. The second part involves the study of structural and electronic properties of phase-change memory materials (PCMs), i. e., Ge2Sb2Te5 (GST) and Ga-doped In2O3. Van der Waals (vdW) interaction must be considered to obtain accurate crystal structure of layered GST. For Ga-doped In2O3 (GIO), the local structure of amorphous GIO is found to resemble that of amorphous In2O3, except the vicinity of doping atoms. The electronic property of a-GIO is metallic, which considerably differs from the semiconducting feature of the crystalline GIO. This emphasizes the contrast in the conductivity of the crystalline and amorphous upon phase switching of GIO. The third part associates with the search for clean-energy materials, viz., hydrogen production, hydrogen storage and green Mg-ion batteries. For hydrogen production, the role of intrinsic point defects to water adsorption on ZnO(10-10) surface is investigated. The findings show that the Zn and O defect-sites are energetically not favorable for the water adsorption and dissociation. For the purpose of storing hydrogen in a solid phase, silicene, doped by alkaline and alkaline earth metals, is investigated. We find that Li-doped and Na-doped silicene can attain the superior storage capacity. For cathode material of Mg-ion batteries, Mg2Mo6S8, the diffusivity of Mg ions occurs through an available channel in the bulk with the onset temperature of 200 K
    • …
    corecore