277 research outputs found
Transit Time and Charge Correlations of Single Photoelectron Events in R7081 PMTs
During the calibration phase of the photomultiplier tubes (PMT) for the
Double Chooz experiment the PMT response to light with single photoelectron
(SPE) intensity was analysed. With our setup we were able to measure the
combined transit time and charge response of the PMT and therefore we could
deconstruct and analyse all physical effects having an influence on the PMT
signal. Based on this analysis charge and time correlated probability density
functions were developed to include the PMT response in a Monte Carlo
simulation.Comment: minor changes by referee reques
PMT Test Facility at MPIK Heidelberg and Double Chooz Super Vertical Slice
Proceedings supplement for conference poster at Neutrino 2010, Athens,
Greece
Transit Time and Charge Correlations of Single Photoelectron Events in R7081 PMTs
During the calibration phase of the photomultiplier tubes (PMT) for the
Double Chooz experiment the PMT response to light with single photoelectron
(SPE) intensity was analysed. With our setup we were able to measure the
combined transit time and charge response of the PMT and therefore we could
deconstruct and analyse all physical effects having an influence on the PMT
signal. Based on this analysis charge and time correlated probability density
functions were developed to include the PMT response in a Monte Carlo
simulation.Comment: minor changes by referee reques
Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment
The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu
Photonics K.K. (HPK) is used in various experiments in particle and
astroparticle physics. We describe the test and calibration of 474 PMTs for the
reactor antineutrino experiment Double Chooz. The unique test setup at
Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate
30 PMTs simultaneously and to characterize the single photo electron response,
transit time spread, linear behaviour and saturation effects, photon detection
efficiency and high voltage calibration
Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment
The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu
Photonics K.K. (HPK) is used in various experiments in particle and
astroparticle physics. We describe the test and calibration of 474 PMTs for the
reactor antineutrino experiment Double Chooz. The unique test setup at
Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate
30 PMTs simultaneously and to characterize the single photo electron response,
transit time spread, linear behaviour and saturation effects, photon detection
efficiency and high voltage calibration
Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment
The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu
Photonics K.K. (HPK) is used in various experiments in particle and
astroparticle physics. We describe the test and calibration of 474 PMTs for the
reactor antineutrino experiment Double Chooz. The unique test setup at
Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate
30 PMTs simultaneously and to characterize the single photo electron response,
transit time spread, linear behaviour and saturation effects, photon detection
efficiency and high voltage calibration
The BNO-LNGS joint measurement of the solar neutrino capture rate in 71Ga
We describe a cooperative measurement of the capture rate of solar neutrinos
by the reaction 71Ga(\nu_e,e^-)71Ge. Extractions were made from a portion of
the gallium target in the Russian-American Gallium Experiment SAGE and the
extraction samples were transported to the Gran Sasso laboratory for synthesis
and counting at the Gallium Neutrino Observatory GNO. Six extractions of this
type were made and the resultant solar neutrino capture rate was 64
^{+24}_{-22} SNU, which agrees well with the overall result of the gallium
experiments. The major purpose of this experiment was to make it possible for
SAGE to continue their regular schedule of monthly solar neutrino extractions
without interruption while a separate experiment was underway to measure the
response of 71Ga to neutrinos from an 37Ar source. As side benefits, this
experiment proved the feasibility of long-distance sample transport in ultralow
background radiochemical experiments and familiarized each group with the
methods and techniques of the other.Comment: 7 pages, no figures; minor additions in version
Searching for sterile neutrinos in ice
Oscillation interpretation of the results from the LSND, MiniBooNE and some
other experiments requires existence of sterile neutrino with mass eV
and mixing with the active neutrinos . It has
been realized some time ago that existence of such a neutrino affects
significantly the fluxes of atmospheric neutrinos in the TeV range which can be
tested by the IceCube Neutrino Observatory. In view of the first IceCube data
release we have revisited the oscillations of high energy atmospheric neutrinos
in the presence of one sterile neutrino. Properties of the oscillation
probabilities are studied in details for various mixing schemes both
analytically and numerically. The energy spectra and angular distributions of
the events have been computed for the simplest mass, and
mixing schemes and confronted with the IceCube data. An
illustrative statistical analysis of the present data shows that in the
mass mixing case the sterile neutrinos with parameters required by
LSND/MiniBooNE can be excluded at about level. The
mixing scheme, however, can not be ruled out with currently available IceCube
data.Comment: 41 pages, 16 figures. Accepted for publication in JHEP. Minor changes
from the previous versio
Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam
We report an early result from the ICARUS experiment on the search for nu_mu
to nu_e signal due to the LSND anomaly. The search was performed with the
ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS
neutrinos from CERN at an average energy of about 20 GeV, after a flight path
of about 730 km. The LSND anomaly would manifest as an excess of nu_e events,
characterized by a fast energy oscillation averaging approximately to
sin^2(1.27 Dm^2_new L/ E_nu) = 1/2. The present analysis is based on 1091
neutrino events, which are about 50% of the ICARUS data collected in 2010-2011.
Two clear nu_e events have been found, compared with the expectation of 3.7 +/-
0.6 events from conventional sources. Within the range of our observations,
this result is compatible with the absence of a LSND anomaly. At 90% and 99%
confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation
probabilities of 5.4 10^-3 and 1.1 10^-2 are set respectively. The result
strongly limits the window of open options for the LSND anomaly to a narrow
region around (Dm^2, sin^2(2 theta))_new = (0.5 eV^2, 0.005), where there is an
overall agreement (90% CL) between the present ICARUS limit, the published
limits of KARMEN and the published positive signals of LSND and MiniBooNE
Collaborations.Comment: 10 pages, 7 figure
Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"
In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that
XENON100's upper limits on spin-independent WIMP-nucleon cross sections for
WIMP masses below 10 GeV "may be understated by one order of magnitude or
more". Having performed a similar, though more detailed analysis prior to the
submission of our new result (arXiv:1207.5988), we do not confirm these
findings. We point out the rationale for not considering the described effect
in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure
- …
