738 research outputs found
Extreme Lagrangian acceleration in confined turbulent flow
A Lagrangian study of two-dimensional turbulence for two different
geometries, a periodic and a confined circular geometry, is presented to
investigate the influence of solid boundaries on the Lagrangian dynamics. It is
found that the Lagrangian acceleration is even more intermittent in the
confined domain than in the periodic domain. The flatness of the Lagrangian
acceleration as a function of the radius shows that the influence of the wall
on the Lagrangian dynamics becomes negligible in the center of the domain and
it also reveals that the wall is responsible for the increased intermittency.
The transition in the Lagrangian statistics between this region, not directly
influenced by the walls, and a critical radius which defines a Lagrangian
boundary layer, is shown to be very sharp with a sudden increase of the
acceleration flatness from about 5 to about 20
Conditional vorticity budget of coherent and incoherent flow contributions in fully developed homogeneous isotropic turbulence
We investigate the conditional vorticity budget of fully developed
three-dimensional homogeneous isotropic turbulence with respect to coherent and
incoherent flow contributions. The Coherent Vorticity Extraction based on
orthogonal wavelets allows to decompose the vorticity field into coherent and
incoherent contributions, of which the latter are noise-like. The impact of the
vortex structures observed in fully developed turbulence on statistical balance
equations is quantified considering the conditional vorticity budget. The
connection between the basic structures present in the flow and their
statistical implications is thereby assessed. The results are compared to those
obtained for large- and small-scale contributions using a Fourier
decomposition, which reveals pronounced differences
Deciphering Subunit-Specific Functions within SWI/SNF Complexes
In this issue of Cell Reports, Sen et al. and Dutta et al. reveal the modularity of the yeast SWI/SNF chromatin remodeling complex and show that loss of different subunits leads to distinct consequences for gene expression. : In this issue of Cell Reports, Sen et al. and Dutta et al. reveal the modularity of the yeast SWI/SNF chromatin remodeling complex and show that loss of different subunits leads to distinct consequences for gene expression
A Rapid Segmentation-Insensitive "Digital Biopsy" Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non-Small Cell Lung Cancer.
Quantitative imaging approaches compute features within images' regions of interest. Segmentation is rarely completely automatic, requiring time-consuming editing by experts. We propose a new paradigm, called "digital biopsy," that allows for the collection of intensity- and texture-based features from these regions at least 1 order of magnitude faster than the current manual or semiautomated methods. A radiologist reviewed automated segmentations of lung nodules from 100 preoperative volume computed tomography scans of patients with non-small cell lung cancer, and manually adjusted the nodule boundaries in each section, to be used as a reference standard, requiring up to 45 minutes per nodule. We also asked a different expert to generate a digital biopsy for each patient using a paintbrush tool to paint a contiguous region of each tumor over multiple cross-sections, a procedure that required an average of <3 minutes per nodule. We simulated additional digital biopsies using morphological procedures. Finally, we compared the features extracted from these digital biopsies with our reference standard using intraclass correlation coefficient (ICC) to characterize robustness. Comparing the reference standard segmentations to our digital biopsies, we found that 84/94 features had an ICC >0.7; comparing erosions and dilations, using a sphere of 1.5-mm radius, of our digital biopsies to the reference standard segmentations resulted in 41/94 and 53/94 features, respectively, with ICCs >0.7. We conclude that many intensity- and texture-based features remain consistent between the reference standard and our method while substantially reducing the amount of operator time required
Origin of Lagrangian Intermittency in Drift-Wave Turbulence
The Lagrangian velocity statistics of dissipative drift-wave turbulence are
investigated. For large values of the adiabaticity (or small collisionality),
the probability density function of the Lagrangian acceleration shows
exponential tails, as opposed to the stretched exponential or algebraic tails,
generally observed for the highly intermittent acceleration of Navier-Stokes
turbulence. This exponential distribution is shown to be a robust feature
independent of the Reynolds number. For small adiabaticity, algebraic tails are
observed, suggesting the strong influence of point-vortex-like dynamics on the
acceleration. A causal connection is found between the shape of the probability
density function and the autocorrelation of the norm of the acceleration
- …