12 research outputs found

    An Experimental Study On The Performance And Exhaust Emission Characteristics Of A CI Engine Powered By Alcohol/Biodiesel/Diesel Fuel Blends Containing Different Types Of Alcohol Isopropanol-C3, 1-Butanol-C4, And Isopentanol-C5

    Get PDF
    Alcohols are significant alternative and renewable fuel candidates for the utilization in the internal combustion engines due to encouraging favorable environmental and economic outputs. Long-chain alcohols have various advantages over short-chain alcohols because of their larger energy content, elevated cetane number CN and preferable blending properties, etc. The objective of the present experimental research deal with the exploring and compare the influence of the ternary fuel mixtures of petroleum-based diesel fuel, cottonseed oil methyl ester COME and long-chain alcohols of isopropanol Pr , 1-butanol Bt , and isopentanol Pt on the performance and emission characteristics of a single-cylinder, four-stroke, naturally-aspirated, direct-injection compression-ignition CI engine. As the prepared tested fuel samples, four different blends were as follows on a volume basis: B20 20% COME + %80 diesel fuel , B20Pr20 20% COME + %20 isopropanol + %80 diesel fuel , B20Bt20 20% COME + %20 1-butanol + %80 diesel fuel , and B20Pt20 20% COME + %20 isopentanol + %80 diesel fuel . The engine trials were carried out at various loads 0-1250 W and under a constant speed 3000 rpm to observe the aforementioned behaviors. Based on the experimental outcomes, brake specific fuel consumption BSFC values of B20Pr20 exhibited higher than those of other ternary blends at all loads. Brake thermal efficiency BTE values for B20Pt20 were observed as larger than those of ternary blends. B20Pt20 had higher exhaust gas temperature EGT values than those of B20Bt20 and B20Pr20. The infusion of long-chain alcohols to COME/diesel blend caused to reduce NOX emissions meanwhile isopropanol, 1-butanol, and isopentanol were the most to least influential alcohol types, respectively. Besides, with the addition of alcohol, a substantial decrement was noticed in smoke opacity at entire loads owing to the excess amount of oxygen content and lesser ratio of C/H of the alcohols. However, CO and HC emissions rose by infusion of long-chain alcohols to the blends. Finally, it can be concluded that higher alcohols could be a possible fuel additive for the fractional replacement for petroleum-based diesel fuel and biodiesel in the blends for CI engine practices

    Energy, exergy, sustainability, and economic analyses of a grid-connected solar power plant consisting of bifacial PV modules with solar tracking system on a single axis

    Get PDF
    This study presents the energy, exergy, sustainability and exergoeconomic analysis of a grid-connected solar power plant with a power capacity of 226.4 MWe with a single axis solar tracking system consisting of monocrystalline and bifacial solar panels manufactured with half-cut technology. This solar power plant is located in Karapınar district of Konya province in Türkiye, between 37°45 and 37°47 north latitudes and 33°33 and 33°35 east longitudes. Based on the first and second laws of thermodynamics, the 6-month average values of the energy efficiency, maximum electrical efficiency, power conversion efficiency, exergy efficiency, sustainability index, thermoeconomic, and exergoeconomic parameters of the power plant were evaluated in detail. As a result of the energy and exergy analyses, the energy efficiency, maximum electricity efficiency, power conversion efficiency, and exergy efficiency of the plant were found to be 75.50%, 36.42%, 22.34%, and 21.98%, respectively. The sustainability index of the power plant is 1.29. Thermoeconomic and exergoeconomic parameter values were calculated as 2.43 W/and2.32 W/ and 2.32 W/, respectively, using EXCEM method

    Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol-A detailed assessment on the combustion, emission, and performance characteristics of a CI engine

    No full text
    The core objective of this study is to pull back the worsened combustion, emission, and performance characteristics of a CI engine fuelled with waste tire pyrolysis oil diesel fuel blends. Four fuels are tested in the experiments. These are (1) 100% diesel fuel, (2) 20% waste tire pyrolysis oil ? 80% diesel fuel, (3) 10% pyrolysis oil and 80% diesel fuel containing 10% waste biodiesel, and finally, (4) 10% waste tire pyrolysis oil and 80% diesel fuel containing 10% waste fusel oil. The tests are performed at a constant engine speed of 2400 rpm, and varying engine loads from 3 to 12 Nm with intervals of 3 Nm. In the results, it is noticed that using of waste tire pyrolysis oil diesel fuel blend is reducing the brake thermal efficiency down to 9.13% for waste tire pyrolysis oil diesel fuel blends, however, this reduction is being pulled back by 7.51%, and 3.82% with the addition of waste biodiesel, and fusel oil, respectively as compared to that of diesel fuel. On the other hand, waste tire pyrolysis oil diesel fuel blend increased the brake specific fuel consumption by 21.78%, however, this increase is being pulled back by 8.89%, and 12.57% for waste biodiesel, and fusel oil, respectively. The increase in carbon monoxide for waste tire pyrolysis oil-diesel fuel is 7.09% in comparison with that of diesel fuel. However, with the addition of biofuels, carbon monoxide is being dropped by 7.69% for waste biodiesel, and 19.23% for fusel oil due to the high oxygen contents of waste biofuels. Moreover, waste tire pyrolysis oil-diesel fuel blend is increasing nitrogen oxide by 7.09%, but this increase by 4.64% with the addition of waste biodiesel. On the other hand, the addition of fusel oil is converting the increasing trend of nitrogen oxide into a reduction of 3.09% owing to fusel oil?s water content. As a consequence, this research is proving that the waste biofuels are able to improve poor combustion, emission, and performance characteristics of binary waste tire pyrolysis oil diesel blend with the doping of waste biofuels, and suggesting ternary blends rather than waste tire pyrolysis oil alone for diesel engines. Moreover, it is noticed that burning waste products is a very effective tool for both waste management and alternate to fossil fuels. ? 2021 Elsevier Ltd. All rights reserved.Duzce University Scientific Research Projects Coordination UnitDuzce University [2020.07.04.1097]; Duzce UniversityDuzce UniversityThis work is supported by Duzce University Scientific Research Projects Coordination Unit with the project number 2020.07.04.1097. The authors thank Duzce University for its financial support.WOS:0006325053000092-s2.0-8510038852

    Impact prediction model of acetone at various ignition advance by artificial neural network and response surface methodology techniques for spark ignition engine

    No full text
    In this study, it was aimed to predict and optimize the effects of acetone/gasoline mixtures on spark ignition engine responses at different engine speeds and ignition advance values with artificial neural network and response surface methodology. The regression results obtained from response surface methodology show that absolute variance ratio values for all answers are greater than 0.96. Correlation coefficient values obtained from artificial neural network were obtained higher than 0.91. Mean absolute percentage error values were between 0.8859% and 9.01427% for artificial neural network, while it was between 1.146% and 8.957% for response surface methodology. Optimization study with response surface methodology revealed that the optimum results are 1700 rpm engine speed, 2% acetone ratio and 11° before top dead center ignition advance with a combined desirability factor of 0.76523%. Additionally, in accordance with the confirmation analysis among the optimal outcomes and the estimation outcomes, it was stated that there is a great harmony with a maximum error percentage of 7.662%. As a result, it is concluded that the applied response surface methodology and artificial neural network models can perfectly provide the impact of acetone percentage on spark ignition engine responses at different engine speeds and ignition advance values

    Thermophysical properties of castor oil (ricinus communis l.) biodiesel and its blends

    No full text
    In this study, biodiesel (methyl ester) was produced from Castor Oil (Ricinus communis L.) (CO) using sodium hydroxide (NaOH) and methanol (CH3OH) by the two-step transesterification method. Nine different fuel blends (2, 5, 10, 20, 30, 40, 50, 60 and 75% by volume blending with diesel) were prepared. The density values of Castor Oil Biodiesel (COB) and its blends were measured at the temperature range from 0 to 93°C in steps of 5°C and the kinematic viscosity values of COB and its blends were measured at the temperature range from 30 to 100°C in the steps of 5°C. The results showed that the density, kinematic viscosity, calorific value, flash point, pH, copper strip corrosion and water content of COB are 932.40 kg·m-3, 15.069 mm².s-1, 38.600 MJ·kg-1, 182°C, 7, 1a and 1067.7 mg.kg-1, respectively. The density and kinematic viscosity of fuel samples decrease as temperature increases; and also these properties decrease as a result of the increase in the amount of diesel in the blends.Neste estudo, o biodiesel (metil éter) foi produzido a partir do óleo de rícino (Ricinus communis L.) (CO, por suas siglas em inglês) usando hidróxido de sódio (NaOH) e metanol (CH3OH) através de um método de transesterificação de dois passos. Foram preparadas até nove misturas de combustível diferentes (2, 5, 10, 20, 30, 40, 50, 60 e 75% por volume de mistura com o diesel). Os valores de densidade do biodiesel de óleo de rícino (COB, por suas siglas em inglês) e as suas misturas foram calculados dentro do rango de temperatura de 0 a 93°C no passo de 5°C e os valores de viscosidade cinemática do COB e das misturas foram calculadas no rango de temperatura de 30 a 100°C no passo de 5°C. Os resultados demonstraron que a densidade, viscosidade cinemática, valor calorífico, ponto de fusão, PH, corrosão da faixa de cobre e conteúdo de água do COB eram de 932.40 kg·m-3, 15.069 mm².s-1, 38.600 MJ·kg-1, 182°C, 7, 1a e 1067.7 mg.kg-1, respectivamente. Os valores de densidade e viscosidade cinemática das amostras de combustível diminuem na medida em que aumenta a temperatura; e também essas propriedades diminuem em decorrência do aumento na quantidade de diesel nas misturas.En este estudio, se produjo biodiesel (metil éter) a partir de aceite de ricino (Ricinus communis L.) (CO, de sus siglas en ingles) utilizando hidróxido de sodio (NaOH) y metanol (CH3OH) a través del método de transesterificación en dos pasos. Se prepararon nueve mezclas diferentes (2, 5, 10, 20, 30, 40, 50, 60 and 75% dependiendo del volumen de la mezcla con biodiesel. Se estimaron los valores de densidad del Biodiesel de Aceite de Ricino (COB, de sus siglas en ingles) y sus mezclas en un rango de temperatura de 0 a 93°C en intervalos de 5°C y también se estimaron los valores de viscosidad cinemática de COB y sus mezclas dentro del rango temperatura comprendido entre 30 y 100°C en intervalos de 5°C. Los resultados mostraron que la densidad, la viscosidad cinemática, el valor calorífico, el punto de ignición, pH, la corrosión de la franja de cobre y el contenido de agua del COB son 932.40 kg·m-3, 15.069 mm².s-1, 38.600 MJ·kg-1, 182°C, 7, 1a y 1067.7 mg.kg-1, respectivamente. La densidad y la viscosidad cinemática de las muestras de combustible disminuyen a medida que aumenta la temperatura; y también estas propiedades disminuyen como resultado del aumento en la cantidad de biodiesel en las mezclas

    The industrial-grade hemp (

    No full text
    The core focus of the present investigation is regarding biodiesel production from industrial hemp seed oil applying single-stage homogenous catalyzed transesterification process obtaining high yield of methyl ester. The engine tests were carried out on a single-cylinder, four-stroke, water-cooled, unmodified diesel engine operating with hemp seed oil methyl ester as well as its blends with conventional diesel fuel. The experimental findings of the test fuels were compared with those from diesel. The results pointed out that the performance and combustion behaviors of biodiesel fuels are just about in line with those of diesel fuel propensity. The specific fuel consumption for 5% biodiesel blend (0.291 kg/kW h), 10% biodiesel blend (0.305 kg/kW h), and 20% biodiesel blend (0.312 kg/kW h) blends at full load was closer to diesel (0.275 kg/kW h). In the meantime, the thermal efficiency for biodiesel was found to be at the range of 15.98–24.97% and it was slightly lower than that of diesel (18.10–29.85%) at the working loads. On the other hand, the harmful pollutant characteristics of carbon monoxide, hydrocarbon, and smoke opacity for biodiesel and its blends were observed to be lower in comparison with diesel during the trials. However, the oxides of nitrogen emissions for biodiesel were monitored to be as 6.85–15.40 g/kW h which was remarkably higher than that of diesel (4.71–8.63 g/kW h). Besides that, the combustion behaviors of biodiesel and its blends with diesel showed much the same followed those of diesel. Namely, the duration of ignition delay of biodiesel–diesel blends was shorter than that of diesel fuel because of the higher cetane number specification of the methyl ester. The highest gas pressures inside the cylinder as well as the rates of the heat release of biodiesel including test fuels are lower in contrast to the diesel due to the shorter ignition delay. It could be concluded that the utilization of biodiesel produced from industrial hemp seed oil in the diesel engine up to 20% (by vol.) will decrease the consumption of diesel and environmental pollution, especially in developing countries

    Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: An approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses

    No full text
    CAKMAK, Abdulvahap/0000-0003-1434-6697; YESILYURT, Murat Kadir/0000-0003-0870-7564WOS:000535710000063Studies on alternative and environmentally friendly fuels for compression-ignition engines continue intensively. In this work, energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses have been conducted by evaluating performance and emission values obtained by operating with different ratios of 1-heptanol/diesel blends (Hp0, Hp5, Hp10, and Hp20) as novel fuels under a constant speed (1500 rpm) with different engine loads (25%, 50%, 75%, and full load) in a single-cylinder, four-stroke, water-cooled, direct-injection, compression-ignition engine. In the test engine, energy and exergy efficiencies and losses, energetic and exergetic powers, irreversibility, and destruction of the exergy for the aforementioned fuel blends have been calculated and compared with pure diesel fuel. In the tests, the highest fuel consumption was determined as 0.221 kg/kWh in HP20 fuel at 100% load because 1-heptanol has lower calorific value than that of neat diesel fuel. The energy efficiency values in different loads of diesel engine for all fuel blends (Hp0-Hp20) have been calculated to be as between 14.46% and 40.72% along with the corresponding exergy efficiency values have been found to be as between 13.43% and 37.79%. By performing emission measurements, the highest CO2 emission cost has been calculated as 66.94 USD/year at a 100% load in Hp10 fuel according to the enviroeconomic analysis. In this present research, by implementing the exergoeconomic analysis, the highest engine output power cost at a load of 25% has been noted to be at 1.6 USD/MJ for Hp20 blend. Sustainability analysis has been determined according to the SI index, and the highest index was calculated to be 1.6 at a 100% load for Hp0 fuel

    Research on the usability of various oxygenated fuel additives in a spark-ignition engine considering thermodynamic and economic analyses

    No full text
    In this study, thermodynamic and economic analyses of binary fuel blends (E15, EA15, M15, MA15, and T15) using commercial gasoline as fuel and oxygenated fuel additives (ethanol, ethyl acetate, methanol, methyl acetate, and terpineol) at 15% by volume in a spark-ignition engine were performed. Performance and emission tests were carried out at various engine loads at a constant speed of 1500 rpm using commercial gasoline and five different fuel blends. Thermodynamic analyses were carried out on the test data. The augmentation in engine load caused an increase in exergy losses and a decrease in the unit cost of engine power exergy values. Specifically for gasoline fuel, the unit cost of engine power exergy at 25% engine load is 1.99 times higher than at 100% load. In fuel blends, the pump price of each fuel affects the fuel cost rate. Exergy efficiency in fuel blends increases with increasing engine load. The highest exergy efficiency is 19.58% for gasoline fuel at 100% engine load. It is 15.95% for M15 fuel at the same load. The exergy values of G100 and T15 fuel were closest to each other and T15 offered better energetic and exergetic performance than the other binary blends.</p

    Process optimization for biodiesel production from neutralized waste cooking oil and the effect of this biodiesel on engine performance

    No full text
    ABSTRACT In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.RESUMEN Este estudio analiza el proceso de producción de metil éster a partir de aceites de cocina usados y neutralizados mediante una reacción alcalí-catalizada (KOH) de fase única. El proceso de optimización se lleva a cabo tomando en cuenta parámetros tales como: La concentración del catalizador, la relación metanol/aceite, la temperatura de reacción y el tiempo de reacción. La eficiencia óptima de conversión del metil éster fue de 90,1% bajo condiciones óptimas de 0,7 wt% de hidróxido de potasio, 25 wt% de relación metanol/aceite, tiempo de reacción de 90 minutos y temperatura de reacción de 60°C. Después de determinar las características como combustible del metil éster obtenido bajo condiciones óptimas, se sometió a investigación su efecto sobre el desempeño del motor y de las emisiones de CO y NOx del metil éster utilizando un motor diesel de un sólo cilindro y de inyección directa. Cuando se compararon los resultados con el combustible diesel, se observó que la potencia y el torque del motor disminuyeron utilizando metil éster, mientras que el consumo de combustible específico aumentó. La emisión de NOx aumenta a una tasa de 18,4% en promedio cuando se utiliza el metil éster
    corecore