328 research outputs found

    Nonlinear coupling of nano mechanical resonators to Josephson quantum circuits

    Get PDF
    We propose a technique to couple the position operator of a nano mechanical resonator to a SQUID device by modulating its magnetic flux bias. By tuning the magnetic field properly, either linear or quadratic couplings can be realized, with a discretely adjustable coupling strength. This provides a way to realize coherent nonlinear effects in a nano mechanical resonator by coupling it to a Josephson quantum circuit. As an example, we show how squeezing of the nano mechanical resonator state can be realized with this technique. We also propose a simple method to measure the uncertainty in the position of the nano mechanical resonator without quantum state tomography

    Dissipative phase-fluctuations in superconducting wires capacitively coupled to diffusive metals

    Full text link
    We study the screening of the Coulomb interaction in a quasi one-dimensional superconductor given by the presence of either a one- or a two-dimensional non-interacting electron gas. To that end, we derive an effective low-energy phase-only action, which amounts to treating the Coulomb and superconducting correlations in the random-phase approximation. We concentrate on the study of dissipation effects in the superconductor, induced by the effect of Coulomb coupling to the diffusive density-modes in the metal, and study its consequences on the static and dynamic conductivity. Our results point towards the importance of the dimensionality of the screening metal in the behavior of the superconducting plasma mode of the wire at low energies. In absence of topological defects, and when the screening is given by a one-dimensional electron gas, the superconducting plasma mode is completely damped in the limit q0q\to 0, and consequently superconductivity is lost in the wire. In contrast, we recover a Drude-response in the conductivity when the screening is provided by a two-dimensional electron gas.Comment: 16 pages, 8 figures, 1 table, 2 appendice

    Kinetic-inductance-limited reset time of superconducting nanowire photon counters

    Full text link
    We investigate the recovery of superconducting NbN-nanowire photon counters after detection of an optical pulse at a wavelength of 1550 nm, and present a model that quantitatively accounts for our observations. The reset time is found to be limited by the large kinetic inductance of these nanowires, which forces a tradeoff between counting rate and either detection efficiency or active area. Devices of usable size and high detection efficiency are found to have reset times orders of magnitude longer than their intrinsic photoresponse time.Comment: Submitted to Applied Physics Letter

    Resistivity scaling and critical dynamics of fully frustrated Josephson-junction arrays with on-site dissipation

    Full text link
    We study the scaling behavior and critical dynamics of the resistive transition in Josephson-junction arrays, at f=1/2 flux quantum per plaquette, by numerical simulation of an on-site dissipation model for the dynamics. The results are compared with recent simulations using the resistively-shunted-junction model. For both models, we find that the resistivity scaling and critical dynamics of the phases are well described by the same critical temperature as for the chiral (vortex-lattice) transition, with a power-law divergent correlation length. The behavior is consistent with the single transition scenario, where phase and chiral variables order at the same temperature, but with different dynamic exponents z for phase coherence and chiral order.Comment: 17 pages, 13 figures, to appear in Phys. Rev.

    Mouse Genome Informatics (MGI): latest news from MGD and GXD.

    Get PDF
    The Mouse Genome Informatics (MGI) database system combines multiple expertly curated community data resources into a shared knowledge management ecosystem united by common metadata annotation standards. MGI\u27s mission is to facilitate the use of the mouse as an experimental model for understanding the genetic and genomic basis of human health and disease. MGI is the authoritative source for mouse gene, allele, and strain nomenclature and is the primary source of mouse phenotype annotations, functional annotations, developmental gene expression information, and annotations of mouse models with human diseases. MGI maintains mouse anatomy and phenotype ontologies and contributes to the development of the Gene Ontology and Disease Ontology and uses these ontologies as standard terminologies for annotation. The Mouse Genome Database (MGD) and the Gene Expression Database (GXD) are MGI\u27s two major knowledgebases. Here, we highlight some of the recent changes and enhancements to MGD and GXD that have been implemented in response to changing needs of the biomedical research community and to improve the efficiency of expert curation. MGI can be accessed freely at http://www.informatics.jax.org

    Absence of charge backscattering in the nonequilibrium current of normal-superconductor structures

    Full text link
    We study the nonequilibrium transport properties of a normal-superconductor-normal structure, focussing on the effect of adding an impurity in the superconducting region. Current conservation requires the superfluid velocity to be nonzero, causing a distortion of the quasiparticle dispersion relation within the superconductor. For weakly reflecting interfaces we find a regime of intermediate voltages in which Andreev transmission is the only permitted mechanism for quasiparticles to enter the superconductor. Impurities in the superconductor can only cause Andreev reflection of these quasiparticles and thus cannot degrade the current. At higher voltages, a state of gapless superconductivity develops which is sensitive to the presence of impurities.Comment: Latex file, 11 pages, 2 figures available upon request [email protected], to be published in Journal of Physics: Condensed Matte

    Mouse Genome Database (MGD): Knowledgebase for mouse-human comparative biology.

    Get PDF
    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the community model organism knowledgebase for the laboratory mouse, a widely used animal model for comparative studies of the genetic and genomic basis for human health and disease. MGD is the authoritative source for biological reference data related to mouse genes, gene functions, phenotypes and mouse models of human disease. MGD is the primary source for official gene, allele, and mouse strain nomenclature based on the guidelines set by the International Committee on Standardized Nomenclature for Mice. MGD\u27s biocuration scientists curate information from the biomedical literature and from large and small datasets contributed directly by investigators. In this report we describe significant enhancements to the content and interfaces at MGD, including (i) improvements in the Multi Genome Viewer for exploring the genomes of multiple mouse strains, (ii) inclusion of many more mouse strains and new mouse strain pages with extended query options and (iii) integration of extensive data about mouse strain variants. We also describe improvements to the efficiency of literature curation processes and the implementation of an information portal focused on mouse models and genes for the study of COVID-19

    Spatial Structure of the Cooper Pair

    Full text link
    The Cooper pair is generally analyzed in momentum space, but its real-space structure also follows directly from the BCS theory. It is shown here that this leads to a spherically symmetrical quasi-atomic wavefunction, with an identical "onion-like" layered structure for each of the electrons constituting the Cooper pair, with charge layers ~ 0.1 nm and a radius ~ 100 nm for a classic BCS superconductor. This charge modulation induces a corresponding charge modulation in the background ionic lattice, and the attractive interaction between these two opposite charge modulations produces the binding energy of the Cooper pair. This physically-based interaction potential is similar to that in the simple BCS approximation. The implications of this real-space picture for understanding conventional and exotic superconductors are discussed.Comment: 14 pages, 4 figure

    Monte Carlo calculation of the current-voltage characteristics of a two dimensional lattice Coulomb gas

    Full text link
    We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent a(T)a(T) of the nonlinear current-voltage characteristic, VIa(T)+1V \sim I^{a(T)+1}. The determinations rely on both equilibrium and non-equilibrium simulations. We find good agreement between the different determinations, and our results also agree closely with experimental results for Hg-Xe thin film superconductors and for certain single crystal thin-film high temperature superconductors.Comment: late

    Rearrangement of the vortex lattice due to instabilities of vortex flow

    Full text link
    With increasing applied current we show that the moving vortex lattice changes its structure from a triangular one to a set of parallel vortex rows in a pinning free superconductor. This effect originates from the change of the shape of the vortex core due to non-equilibrium effects (similar to the mechanism of vortex motion instability in the Larkin-Ovchinnikov theory). The moving vortex creates a deficit of quasiparticles in front of its motion and an excess of quasiparticles behind the core of the moving vortex. This results in the appearance of a wake (region with suppressed order parameter) behind the vortex which attracts other vortices resulting in an effective direction-dependent interaction between vortices. When the vortex velocity vv reaches the critical value vcv_c quasi-phase slip lines (lines with fast vortex motion) appear which may coexist with slowly moving vortices between such lines. Our results are found within the framework of the time-dependent Ginzburg-Landau equations and are strictly valid when the coherence length ξ(T)\xi(T) is larger or comparable with the decay length LinL_{in} of the non-equilibrium quasiparticle distribution function. We qualitatively explain experiments on the instability of vortex flow at low magnetic fields when the distance between vortices aLinξ(T)a \gg L_{in} \gg \xi (T). We speculate that a similar instability of the vortex lattice should exist for v>vcv>v_c even when a<Lina<L_{in}.Comment: 10 pages, 11 figure
    corecore