We investigate the recovery of superconducting NbN-nanowire photon counters
after detection of an optical pulse at a wavelength of 1550 nm, and present a
model that quantitatively accounts for our observations. The reset time is
found to be limited by the large kinetic inductance of these nanowires, which
forces a tradeoff between counting rate and either detection efficiency or
active area. Devices of usable size and high detection efficiency are found to
have reset times orders of magnitude longer than their intrinsic photoresponse
time.Comment: Submitted to Applied Physics Letter