25 research outputs found

    Constraints on supersymmetry with light third family from LHC data

    Full text link
    We present a re-interpretation of the recent ATLAS limits on supersymmetry in channels with jets (with and without b-tags) and missing energy, in the context of light third family squarks, while the first two squark families are inaccessible at the 7 TeV run of the Large Hadron Collider (LHC). In contrast to interpretations in terms of the high-scale based constrained minimal supersymmetric standard model (CMSSM), we primarily use the low-scale parametrisation of the phenomenological MSSM (pMSSM), and translate the limits in terms of physical masses of the third family squarks. Side by side, we also investigate the limits in terms of high-scale scalar non-universality, both with and without low-mass sleptons. Our conclusion is that the limits based on 0-lepton channels are not altered by the mass-scale of sleptons, and can be considered more or less model-independent.Comment: 20 pages, 8 figures, 2 tables. Version published in JHE

    Gaugino Anomaly Mediated SUSY Breaking: phenomenology and prospects for the LHC

    Full text link
    We examine the supersymmetry phenomenology of a novel scenario of supersymmetry (SUSY) breaking which we call Gaugino Anomaly Mediation, or inoAMSB. This is suggested by recent work on the phenomenology of flux compactified type IIB string theory. The essential features of this scenario are that the gaugino masses are of the anomaly-mediated SUSY breaking (AMSB) form, while scalar and trilinear soft SUSY breaking terms are highly suppressed. Renormalization group effects yield an allowable sparticle mass spectrum, while at the same time avoiding charged LSPs; the latter are common in models with negligible soft scalar masses, such as no-scale or gaugino mediation models. Since scalar and trilinear soft terms are highly suppressed, the SUSY induced flavor and CP-violating processes are also suppressed. The lightest SUSY particle is the neutral wino, while the heaviest is the gluino. In this model, there should be a strong multi-jet +etmiss signal from squark pair production at the LHC. We find a 100 fb^{-1} reach of LHC out to m_{3/2}\sim 118 TeV, corresponding to a gluino mass of \sim 2.6 TeV. A double mass edge from the opposite-sign/same flavor dilepton invariant mass distribution should be visible at LHC; this, along with the presence of short-- but visible-- highly ionizing tracks from quasi-stable charginos, should provide a smoking gun signature for inoAMSB.Comment: 30 pages including 14 .eps figure

    Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera)

    Get PDF
    Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds—i.e., compounds that target sodium channels—influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees

    An astrocyte-dependent mechanism for neuronal rhythmogenesis

    Full text link
    Communication between neurons rests on their capacity to change their firing pattern to encode different messages. For several vital functions, such as respiration and mastication, neurons need to generate a rhythmic firing pattern. Here we show in the rat trigeminal sensori-motor circuit for mastication that this ability depends on regulation of the extracellular Ca2+ concentration ([Ca2+]e) by astrocytes. In this circuit, astrocytes respond to sensory stimuli that induce neuronal rhythmic activity, and their blockade with a Ca2+ chelator prevents neurons from generating a rhythmic bursting pattern. This ability is restored by adding S100b, an astrocytic Ca2+-binding protein, to the extracellular space, while application of an anti-S100b antibody prevents generation of rhythmic activity. These results indicate that astrocytes regulate a fundamental neuronal property: the capacity to change firing pattern. These findings may have broad implications for many other neural networks whose functions depend on the generation of rhythmic activity

    A Neuron-Glial Perspective for Computational Neuroscience

    Get PDF
    International audienceThere is growing excitement around glial cells, as compelling evidence point to new, previously unimaginable roles for these cells in information processing of the brain, with the potential to affect behavior and higher cognitive functions. Among their many possible functions, glial cells could be involved in practically every aspect of the brain physiology in health and disease. As a result, many investigators in the field welcome the notion of a Neuron-Glial paradigm of brain function, as opposed to Ramon y Cayal's more classical neuronal doctrine which identifies neurons as the prominent, if not the only, cells capable of a signaling role in the brain. The demonstration of a brain-wide Neuron-Glial paradigm however remains elusive and so does the notion of what neuron-glial interactions could be functionally relevant for the brain computational tasks. In this perspective, we present a selection of arguments inspired by available experimental and modeling studies with the aim to provide a biophysical and conceptual platform to computational neuroscience no longer as a mere prerogative of neuronal signaling but rather as the outcome of a complex interaction between neurons and glial cells

    Factors Influencing Acceptance of Hippopotamus at a Large Reservoir in Nigeria

    No full text
    In a world increasingly affected by human presence and activities, achieving human–wildlife coexistence has become the goal of many wildlife conservation programs. Coexistence requires an understanding of factors that contribute to human tolerance and acceptance of problematic wildlife. In four communities in Nigeria, we used structured and semi-structured interviews to explore local people’s acceptance of the river hippopotamus (Hippopotamus amphibius) at a large reservoir with high human impact and where other conspicuous, damage-causing species are absent. We collected data two years apart to evaluate whether acceptance changed over time. Acceptance was low among respondents (21%). Logistic-regression results showed that attitudes, beliefs related to benefits and risks, behaviors toward hippos, study period, and income source significantly influenced acceptance of hippos. Results from Woolf tests showed that hippo-caused human fatalities most notably modified the observed decline in acceptance between study years. The potential significant impact of rare, yet severe events (in this case, human fatalities) on acceptance of wildlife and thus human–wildlife coexistence was supported in this study, one of few focused on hippo-human relations. For conservation and development interventions to be effective at this site, they should, at a minimum, improve human safety around hippos, emphasize current and potential benefits of hippos, create avenues for off-farm income, and reduce crop losses owing to hippos

    Fluorescent labeling and 2-photon imaging of mouse tooth pulp nociceptors

    No full text
    Retrograde fluorescent labeling of dental primary afferent neurons (DPANs) has been described in rats through crystalline fluorescent DiI, while in the mouse, this technique was achieved with only Fluoro-Gold, a neurotoxic fluorescent dye with membrane penetration characteristics superior to the carbocyanine dyes. We reevaluated this technique in the rat with the aim to transfer it to the mouse because comprehensive physiologic studies require access to the mouse as a model organism. Using conventional immunohistochemistry, we assessed in rats and mice the speed of axonal dye transport from the application site to the trigeminal ganglion, the numbers of stained DPANs, and the fluorescence intensity via 1) conventional crystalline DiI and 2) a novel DiI formulation with improved penetration properties and staining efficiency. A 3-dimensional reconstruction of an entire trigeminal ganglion with 2-photon laser scanning fluorescence microscopy permitted visualization of DPANs in all 3 divisions of the trigeminal nerve. We quantified DPANs in mice expressing the farnesylated enhanced green fluorescent protein (EGFPf) from the transient receptor potential cation channel subfamily M member 8 (TRPM8(EGFPf/+)) locus in the 3 branches. We also evaluated the viability of the labeled DPANs in dissociated trigeminal ganglion cultures using calcium microfluorometry, and we assessed the sensitivity to capsaicin, an agonist of the TRPV1 receptor. Reproducible DiI labeling of DPANs in the mouse is an important tool 1) to investigate the molecular and functional specialization of DPANs within the trigeminal nociceptive system and 2) to recognize exclusive molecular characteristics that differentiate nociception in the trigeminal system from that in the somatic system. A versatile tool to enhance our understanding of the molecular composition and characteristics of DPANs will be essential for the development of mechanism-based therapeutic approaches for dentine hypersensitivity and inflammatory tooth pain
    corecore