109 research outputs found

    Cooperative activation of the ATR checkpoint kinase by TopBP1 and damaged DNA

    Get PDF
    TopBP1, acting in concert with DNA containing bulky base lesions, stimulates ATR kinase activity under physiologically relevant reaction conditions. Here, we analyze the roles of the three components in ATR activation: DNA, base damage and TopBP1. We show that base adducts caused by a potent carcinogen, benzo[a]pyrene diol epoxide (BPDE), constitute a strong signal for TopBP1-dependent ATR kinase activity on Chk1 and p53. We find that the C-terminus of TopBP1 binds preferentially to damaged DNA and is sufficient to mediate damaged DNA-dependent ATR activation in a manner similar to full-length TopBP1. Significantly, we find that stimulation of ATR by BPDE-damaged DNA exhibits strong dependence on the length of DNA, with essentially no stimulation with fragments of 0.2 kb and reaching maximum stimulation with 2 kb fragments. Moreover, TopBP1 shows preferential binding to longer DNA fragments and, in contrast to previous biochemical studies, TopBP1 binding is completely independent of DNA ends. We find that TopBP1 binds to circular and linear DNAs with comparable affinities and that these DNA forms elicit the same level of TopBP1-dependent ATR activation. Taken together, these findings suggest a cooperative activation mechanism for the ATR checkpoint kinase by TopBP1 and damaged DNA

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Multiple ATR-Chk1 Pathway Proteins Preferentially Associate with Checkpoint-Inducing DNA Substrates

    Get PDF
    The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses

    An Unexpected Role for the Clock Protein Timeless in Developmental Apoptosis

    Get PDF
    Background: Programmed cell death is critical not only in adult tissue homeostasis but for embryogenesis as well. One of the earliest steps in development, formation of the proamniotic cavity, involves coordinated apoptosis of embryonic cells. Recent work from our group demonstrated that c-Src protein-tyrosine kinase activity triggers differentiation of mouse embryonic stem (mES) cells to primitive ectoderm-like cells. In this report, we identified Timeless (Tim), the mammalian ortholog of a Drosophila circadian rhythm protein, as a binding partner and substrate for c-Src and probed its role in the differentiation of mES cells. Methodology/Principal Findings: To determine whether Tim is involved in ES cell differentiation, Tim protein levels were stably suppressed using shRNA. Tim-defective ES cell lines were then tested for embryoid body (EB) formation, which models early mammalian development. Remarkably, confocal microscopy revealed that EBs formed from the Tim-knockdown ES cells failed to cavitate. Cells retained within the centers of the failed cavities strongly expressed the pluripotency marker Oct4, suggesting that further development is arrested without Tim. Immunoblots revealed reduced basal Caspase activity in the Tim-defective EBs compared to wild-type controls. Furthermore, EBs formed from Tim-knockdown cells demonstrated resistance to staurosporine-induced apoptosis, consistent with a link between Tim and programmed cell death during cavitation. Conclusions/Significance: Our data demonstrate a novel function for the clock protein Tim during a key stage of early development. Specifically, EBs formed from ES cells lacking Tim showed reduced caspase activity and failed to cavitate. As a consequence, further development was halted, and the cells present in the failed cavity remained pluripotent. These findings reveal a new function for Tim in the coordination of ES cell differentiation, and raise the intriguing possibility that circadian rhythms and early development may be intimately linked. © 2011 O'Reilly et al

    Timeless Links Replication Termination to Mitotic Kinase Activation

    Get PDF
    The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication

    DNA replication and the GINS complex: localization on extended chromatin fibers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The GINS complex is thought to be essential for the processes of initiation and elongation of DNA replication. This complex contains four subunits, one of which (Psf1) is proposed to bind to both chromatin and DNA replication-associated proteins. To date there have been no microscopic analyses to evaluate the chromatin distribution of this complex. Here, we show the organization of GINS complexes on extended chromatin fibers in relation to sites of DNA replication and replication-associated proteins.</p> <p>Results</p> <p>Using immunofluorescence microscopy we were able to visualize ORC1, ORC2, PCNA, and GINS complex proteins Psf1 and Psf2 bound to extended chromatin fibers. We were also able to detect these proteins concurrently with the visualization of tracks of recently replicated DNA where EdU, a thymidine analog, was incorporated. This allowed us to assess the chromatin association of proteins of interest in relation to the process of DNA replication. ORC and GINS proteins were found on chromatin fibers before replication could be detected. These proteins were also associated with newly replicated DNA in bead-like structures. Additionally, GINS proteins co-localized with PCNA at sites of active replication.</p> <p>Conclusion</p> <p>In agreement with its proposed role in the initiation of DNA replication, GINS proteins associated with chromatin near sites of ORC binding that were devoid of EdU (absence of DNA replication). The association of GINS proteins with PCNA was consistent with a role in the process of elongation. Additionally, the large size of our chromatin fibers (up to approximately 7 Mb) allowed for a more expansive analysis of the distance between active replicons than previously reported.</p

    Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms

    Get PDF
    The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values

    Disrupting Circadian Homeostasis of Sympathetic Signaling Promotes Tumor Development in Mice

    Get PDF
    and why disruption of circadian rhythm may lead to tumorigenesis. oncogenic potential, leading to tumor development in the same organ systems in wild-type and circadian gene-mutant mice. is a clock-controlled physiological function. The central circadian clock paces extracellular mitogenic signals that drive peripheral clock-controlled expression of key cell cycle and tumor suppressor genes to generate a circadian rhythm in cell proliferation. Frequent disruption of circadian rhythm is an important tumor promoting factor

    Forensic age diagnostics by magnetic resonance imaging of the proximal humeral epiphysis

    Get PDF
    The most commonly used radiological method for age estimation of living individuals is X-ray. Computed tomography is not commonly used due to high radiation exposure, which raises ethical concerns. This problem can be solved with the use of magnetic resonance imaging (MRI), which avoids the use of ionizing radiation. The purpose of the present study was to evaluate the utility of MRI analysis of the proximal humeral epiphyses for forensic age estimations of living individuals. In this study, 395 left proximal humeral epiphyses (patient age 12-30years) were evaluated with fast-spin-echo proton density-weighted image (FSE PD) sequences in a coronal oblique orientation on shoulder MRI images. A five-stage scoring system was used following the method of Dedouit et al. The intra- and interobserver reliabilities assessed using Cohen's kappa statistic were =0.818 and =0.798, respectively. According to this study, stage five first appeared at 20 and 21years of age in males and females, respectively. These results are not directly comparable to any other published study due to the lack of MRI data on proximal humeral head development. These findings may provide valuable information for legally important age thresholds using shoulder MRI. The current study demonstrates that MRI of the proximal humerus can support forensic age estimation. Further research is needed to establish a standardized protocol that can be applied worldwide
    corecore