185 research outputs found

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    Sweet cherry cultivar identification by using SSR markers

    Get PDF
    In this study, sweet cherry varieties and types grown in Turkey were described using SSR markers. This study was undertaken to develop DNA marker profiles that could be used to distinguish among the sweet cherry cultivars used in production in Turkey. For microsatellite analysis, 13SSR primers isolated from sweet cherry (P. avium L.) sour cherry (P. cerasus L.) and peach (P. persica L. Batsch) were used on sweet cherry cultivars and types. Two primer pairs did not give amplification with genotypes analyzed. Two-primer pairs amplified monomorphic fragment for the sweet cherry varieties therefore they were uninformative for the sweet cherry genetic analysis. Genetic similarities were calculated and a dendrogram has been established. All of the 8 SSR primers used and cherries have produced amplified bands. For each primer the alleles obtained has been between 1 and 6, in total 38 alleles have found. Through these analyses the similarities between these varieties have been converted into numerical values. This happens to be the first study kind towards the molecular identification of sweet cherry genetic resources in Turke

    Understanding the potential in vitro modes of action of bis(β‐diketonato) oxovanadium(IV) complexes

    Get PDF
    To understand the potential in vitro modes of action of bis(β-diketonato) oxovanadium(IV) complexes, nine compounds of varying functionality have been screened using a range of biological techniques. The antiproliferative activity against a range of cancerous and normal cell lines has been determined, and show these complexes are particularly sensitive against the lung carcinoma cell line, A549. Annexin V (apoptosis) and Caspase-3/7 assays were studied to confirm these complexes induce programmed cell death. While gel electrophoresis was used to determine DNA cleavage activity and production of reactive oxygen species (ROS), the Comet assay was used to determine induced genomic DNA damage. Additionally, Förster resonance energy transfer (FRET)-based DNA melting and fluorescent intercalation displacement assays have been used to determine the interaction of the complexes with double strand (DS) DNA and to establish preferential DNA base-pair binding (AT versus GC)

    A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society

    Get PDF
    Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative–the IMiLI–is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators–learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators–learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships–a global societally relevant microbiology education ecosystem–in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us–individuals/communities/nations/the human world–and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091–1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.http://www.wileyonlinelibrary.com/journal/mbt2hj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-01:No povertySDG-02:Zero HungerSDG-03:Good heatlh and well-beingSDG-04:Quality EducationSDG-06:Clean water and sanitationSDG-07:Affordable and clean energySDG-08:Decent work and economic growthSDG-12:Responsible consumption and productionSDG-13:Climate actionSDG-14:Life below wate

    Progress in particle-based multiscale and hybrid methods for flow applications

    Get PDF

    Preparation of reversibly immobilized lysozyme onto Procion Green H-E4BD-attached poly(hydroxyethylmethacrylate) film for hydrolysis of bacterial cells

    No full text
    WOS: 000172349500009The flat sheet support for enzyme immobilization was prepared by UV-initiated photopolymerization of 2-hydroxyethyl-methacrylate (HEMA) in the presence of an initiator (alpha alpha'-azoisobutyronitrile. AIBN). An affinity dye, Procion Green H-E4BD, was attached covalently under alkaline conditions and the pHEMA-Procion Green H-E4BD-attached film was used for the immobilization of lysozyme via adsorption. The amount of attached dye on the pHEMA film was 160 mu mol m(2) and the water content of the dye-attached pHEMA film was 69%. The lysozyme adsorption capacity of the dye-attached pHEMA film was determined under conditions of different pH and with different initial concentrations of enzyme in the medium. The maximum lysozyme adsorption capacity of the dye-attached pHEMA film, under the specified experimental conditions was 3.92 g m(-2). Non-specific adsorption of the lyzozyme on the pHEMA film was negligible, Optimum reaction pH was 6.0 for the free and 7.0 for adsorbed enzyme. The free enzyme had an optimum temperature of 35 degreesC. whereas it shifted to 40 degreesC for the immobilized enzyme system. The enzyme could be repeatedly adsorbed and desorbed from the dye-attached pHEMA film without any significant loss in adsorption capacity. (C) 2001 Elsevier Science Ltd. All rights reserved

    Procion Green H-E4BD-immobilized porous poly(hydroxyethylmethacrylate) ion-exchange membrane: preparation and application to lysozyme adsorption

    No full text
    WOS: 000171103500006Lysozyme adsorption onto Procion Green HE-4BD-immobilized poly(2-hydroxyethylmethacrylate) (pHEMA) membrane were investigated. The membrane were prepared by ultraviolet-initiated photopolymerization of HEMA in the presence of an initiator (alpha-alpha'-azoisobutyronitrile; AIBN). The water content of the dye-immobilized membrane was 69%, the amount of immobilized dye on the membrane was 0.544 mu mol ml(-1) and it used in the lysozyme adsorption studies. Lysozyme adsorption on these membranes from aqueous solutions containing different amounts of lysozyme at different pH was investigated in batch reactors. Lysozyme adsorption capacity of the dye-immobilized membrane was 13.33 mg ml(-1). The maximum lysozyme adsorption capacity (q(m)) of the dye-immobilized wet membrane was 14.14 mg ml(-1) and the dissociation constant (kd) value was found to be 0.707 mg ml(-1) lysozyme. More than 95% of the adsorbed lysozyme were desorbed in 120 min in the desorption medium containing 0.5 M KCl at pH 6.0. (C) 2001 Elsevier Science B.V. All rights reserved
    corecore