421 research outputs found

    FlameNEST: explicit profile likelihoods with the Noble Element Simulation Technique

    Get PDF
    We present FlameNEST, a framework providing explicit likelihood evaluations in noble element particle detectors using data-driven models from the Noble Element Simulation Technique. FlameNEST provides a way to perform statistical analyses on real data with no dependence on large, computationally expensive Monte Carlo simulations by evaluating the likelihood on an event-by-event basis using analytic probability elements convolved together in a single TensorFlow multiplication. Furthermore, this robust framework creates opportunities for simple inter-collaboration analyses which will be fundamental for the future of experimental dark matter physics

    First Dark Matter Search Results from a Surface Run of the 10-L DMTPC Directional Dark Matter Detector

    Get PDF
    The Dark Matter Time Projection Chamber (DMTPC) is a low pressure (75 Torr CF4) 10 liter detector capable of measuring the vector direction of nuclear recoils with the goal of directional dark matter detection. In this paper we present the first dark matter limit from DMTPC. In an analysis window of 80-200 keV recoil energy, based on a 35.7 g-day exposure, we set a 90% C.L. upper limit on the spin-dependent WIMP-proton cross section of 2.0 x 10^{-33} cm^{2} for 115 GeV/c^2 dark matter particle mass.Comment: accepted for publication in Physics Letters

    Background Rejection in the DMTPC Dark Matter Search Using Charge Signals

    Full text link
    The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing low-pressure gas TPC detectors for measuring WIMP-nucleon interactions. Optical readout with CCD cameras allows for the detection for the daily modulation in the direction of the dark matter wind, while several charge readout channels allow for the measurement of additional recoil properties. In this article, we show that the addition of the charge readout analysis to the CCD allows us too obtain a statistics-limited 90% C.L. upper limit on the e−e^- rejection factor of 5.6×10−65.6\times10^{-6} for recoils with energies between 40 and 200 keVee_{\mathrm{ee}}. In addition, requiring coincidence between charge signals and light in the CCD reduces CCD-specific backgrounds by more than two orders of magnitude.Comment: 8 pages, 6 figures. For proceedings of DPF 2011 conferenc

    Accelerated Event-by-Event Neutrino Oscillation Reweighting with Matter Effects on a GPU

    Get PDF
    Oscillation probability calculations are becoming increasingly CPU intensive in modern neutrino oscillation analyses. The independency of reweighting individual events in a Monte Carlo sample lends itself to parallel implementation on a Graphics Processing Unit. The library "Prob3++" was ported to the GPU using the CUDA C API, allowing for large scale parallelized calculations of neutrino oscillation probabilities through matter of constant density, decreasing the execution time by a factor of 75, when compared to performance on a single CPU.Comment: Final Update: Post submission update Updated version: quantified the difference in event rates for binned and event-by-event reweighting with a typical binning scheme. Improved formatting of reference

    Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data

    Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    Full text link
    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238^{238}Ue_{e}~<<1.6~mBq/kg, 238^{238}Ul_{l}~<<0.09~mBq/kg, 232^{232}The_{e}~=0.28±0.03=0.28\pm 0.03~mBq/kg, 232^{232}Thl_{l}~=0.25±0.02=0.25\pm 0.02~mBq/kg, 40^{40}K~<<0.54~mBq/kg, and 60^{60}Co~<<0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160±0.0010.160\pm0.001(stat)±0.030\pm0.030(sys) counts.Comment: 13 pages, 3 figures, accepted for publication in Astroparticle Physic
    • …
    corecore