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1 Introduction

Observations on both galactic and cosmological scales have found that dark matter constitutes
approximately 85% of the matter density in the universe [1, 2]. Over the past decade, time projection
chambers (TPCs) containing liquefied noble elements have become the leading technology in the
search for the medium of dark matter [3–6]. Rare event searches such as these often choose to
use frequentist hypothesis testing to present their results [7]. The central object of such tests is
the likelihood which may be obtained via computation of a differential event rate 𝑅 𝑗 ({𝑂𝑖}). This
is the number of expected events from the 𝑗 𝑡ℎ signal or background source producing a given
set of observables {𝑂𝑖}, when integrated over observable space. Experiments today estimate
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such differential event rates by filling multi-dimensional histograms (templates) in a binned space
of observables using Monte Carlo (MC) techniques. Underlying ‘nuisance’ parameters may be
incorporated by creating multiple templates and interpolating between them — these are parameters
which influence the event probability model but are of secondary interest to the experiment. Filling
these templates to the requisite statistical accuracy scales exponentially with both the number of
observables and the number of nuisance parameters, making such analyses computationally unwieldy.
A common compromise is to restrict the number of observables and limit the number of underlying
nuisance parameters, the former reducing the signal/background discrimination of the detector and
the latter making the analysis less robust. Even in previous experiments where spatial and temporal
information has been needed due to highly variable detector conditions [3], coarse binning has been
used and few underlying detector response nuisance parameters have been fitted. Using a neural
network to project observations onto a single dimension can limit the loss of information coming
from removing observables [8], but at the cost of some interpretability. Finally, while projecting
or restricting the number of observables makes templates simpler to generate, exponentially many
templates are still needed to treat correlated nuisance parameters.

Flamedisx is an open-source Python package allowing for likelihood evaluation scaling
approximately linearly rather than exponentially in the number of nuisance parameters. Further to
this, there is no scaling with the inclusion of certain additional observables, making the inclusion of
many more such dimensions computationally feasible [9]. This is achieved by calculating likelihoods
on an event-by-event basis using real experimental data. Flamedisx computes a sum over ‘hidden
variables’ where each term is a product of conditional probabilities calculated from the analytic
probability density/mass function (PDF/PMF) of one part of the detector response model — the
distinction here comes in modelling continuous versus discrete variables. The computation is
performed using TensorFlow [10], which allows for automatic differentiation to facilitate likelihood
maximisation. TensorFlow is greatly accelerated when run on a GPU, increasing computation
speed roughly hundred-fold in the case of Flamedisx [9].

The detector response models originally implemented within Flamedisx, as described in [9],
are inspired primarily by the XENON1T detector [11]. To extend the Flamedisx framework to be
more detector-agnostic, we have incorporated the xenon models of the Noble Element Simulation
Technique (NEST) into Flamedisx. NEST is a precise, detector-agnostic parameterisation of
excitation, ionisation, and the corresponding scintillation and electroluminescence processes in liquid
noble elements as a function of both energy and electric field [12]. These models are constantly
being scrutinised and validated against real data collected by a variety of world-leading noble
element experiments. In addition to improving the accuracy of and extending the reach of analyses
done using Flamedisx, we believe that using the community’s gold-standard collection of noble
element response models encapsulated in NEST will allow for Flamedisx to be used for future
inter-collaboration data analyses between different noble element experiments, further extending
physics reach.

This paper outlines the technical challenges of incorporating the NEST models into Flamedisx, a
framework henceforth referred to as FlameNEST. We also present the results of a series of validations
and discuss the resulting speed implications of our work. The focus throughout will be on dual-phase
liquid xenon (LXe) TPCs; however, NEST contains additional models for single-phase gaseous xenon
detectors along with liquid argon detectors, incorporation of which into FlameNEST is a future goal.
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2 Dual-phase Liquid Xenon Time Projection Chambers

A general schematic of a dual-phase LXe TPC is shown in figure 1. These detectors are typically
cylindrical and filled with LXe with a thin layer of gaseous xenon (GXe) above. A traversing particle
will scatter off either the electrons or nucleus of the xenon atoms, producing electronic recoils (ER)
or nuclear recoils (NR), respectively. These recoils produce xenon excimers, which emit UV photons
as they de-excite. This prompt scintillation signal, or S1, is detected by arrays of photon detectors —
typically photomultiplier tubes (PMTs) — located at the top and bottom of the detector. Electron/ion
pairs can also be produced from a recoil. These ionisation electrons will drift in an electric field,
𝜖liq, towards the liquid-gas interface. Some electrons may be absorbed onto impurities within the
LXe before reaching the top of the detector. This can be quantified by the electron lifetime, which
reduces the average size of the signal towards the bottom of the detector. Once the electrons reach the
liquid-gas interface, they will experience a much stronger electric field, 𝜖gas, designed to extract them
from the liquid into the gas and to produce a larger secondary signal, S2, via electroluminescence.
The PMTs used in LXe TPCs have a probability, 𝑃dpe, of producing two photoelectrons rather than
one from a single detected LXe scintillation photon. This process must be accounted for when
modelling the detector response [13].

Figure 1. Schematic of a dual-phase LXe TPC showing the signal processes from an interaction in the
detector.

The spatial hit pattern of S2 photons in the top and bottom PMT arrays provides (𝑥, 𝑦) position
information in the radial plane of the detector. Due to approximately constant electron drift velocity
in the liquid, the vertical z coordinate can be inferred from the time difference between the arrivals
of S1 and S2 signals. This gives the full set of observables of an interaction event as (S1,S2,𝑥,𝑦,𝑧,𝑡),
where 𝑡 is the time at the start of the event. It is beneficial to include 𝑡 in the list of observables to
capture time-varying effects of background sources, WIMP modulation, and possible changes in
detector conditions like electric field.
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Here, S1 and S2 refer to the integrated pulse area, in terms of detected PMT photoelectrons.
FlameNEST currently operates only at this level, which is the observable of choice for statistical
inference using xenon-based detectors. Extension to include pulse shape information is something
which may be explored in the future. The relative size of the S1 and S2 signals provides information
on the underlying interaction type of the event. Signal and background sources of interest in rare
event searches can be classified as inducing either nuclear recoil (NR) or electronic recoil (ER)
interactions. For the same energy deposited in the scintillation and ionisation channels, discarding
that lost to quenching, NR interactions produce a lower S2/S1 ratio than ER interactions; therefore,
the ratio of the two can be used as a discrimination metric.

To overcome the aforementioned difficulties in filling high-dimensional Monte Carlo templates,
current statistical analyses typically opt to eliminate position dependence of the S1 and S2 values,
normalising them to a reference position in the detector. Detector conditions such as temperature
and electric field, which can vary throughout the lifetime of an experiment, are typically taken to be
constant and data during periods of fluctuation discarded. Likelihood evaluations using Monte Carlo
templates often neglect position and time dependence in certain signal and background sources,
such as spatially-dependent TPC wall background and the temporal dependence of galactic WIMP
annual modulation. This reduces the dimensionality of the observable space from (S1,S2,𝑥,𝑦,𝑧,𝑡) to
‘corrected’ S1 and S2 values, (S1𝑐,S2𝑐).

A significant drawback of such a dimensionality reduction is that signal/background discrimina-
tion is reduced. This is particularly the case towards the top of the detector, where S2 signals are
large and the relative fluctuations in the inferred charge yield are smaller. Thus, a dimensionality
reduction leads to sub-optimal ER/NR discrimination in certain regions of the detector. Furthermore,
not correctly accounting for the spatial and temporal dependence of the interaction rates of relevant
signal or background sources further reduces signal/background discrimination.

The probability distributions describing each stage of this detector response have parameters
which are often functions of many other underlying nuisance parameters — these are specific to
the models of the different physical processes constituting the detector response. Whilst auxiliary
measurements can constrain them to some degree, a truly robust analysis will allow them to float during
inference. Enabling this with a Monte Carlo template likelihood evaluation would lead to exponential
scaling in the template generation as more nuisance parameters are included, whereas the Flamedisx
computation scales instead approximately linearly with nuisance parameters as seen in figure 6 in [9].

3 Technical implementation

NEST fully models the production of ionised and excited xenon atoms (ions/excitons), including
recombination fluctuations, which is subsequently used in modelling the ionisation electron and scin-
tillation photon yields. In contrast, the original Flamedisx models did not feature this extra degree of
freedom — the splitting of quanta between electrons and photons was modelled directly as a function
of energy. Additionally, the detector response models translating produced quanta distributions into
observable signal distributions in NEST feature a number of extra steps compared to the original
Flamedisx models. Consequently, it was not possible to incorporate the NEST models directly into the
original tensor structure of Flamedisx. Therefore, the underlying tensor structure of Flamedisx was ex-
tended to incorporate the NEST models in full generality. In this section we outline this new structure.
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3.1 Block structure

The FlameNEST block structure is shown in figure 2, which may be compared with the original
Flamedisx block structure in figure 3 of [9]. The pre-quanta stage maps between the differential
rate spectrum of the interaction of the 𝑗 𝑡ℎ source with the liquid xenon, 𝑅 𝑗 (𝐸, 𝑥, 𝑦, 𝑧, 𝑡), where 𝐸 is
the energy of the interaction, and produced quanta (photon/electron) distributions. The post-quanta
stage maps between these produced quanta distributions and the distributions of signals, S1 and S2.
The models depend on the type of interaction of the source with the xenon atoms — whether an ER
or NR occurs. Variables unique to the ER source are written in blue in the central green block and
the variables unique to the NR source are written in red. Event position and time additionally enter
at the level of the model functions used in the probabilistic detector response model.

Figure 2. FlameNEST block structure. The blocks are categorised by whether they model pre-quanta
processes (production of electrons and photons from an energy deposition) or post-quanta processes (detection
of quanta and translation to final signals). The dimensions of each block are indicated graphically. Every
block has an additional dimension, not depicted here, over events within a computation batch. The probability
distributions for the post-quanta blocks are indicated by their colour — see section 3.1.1 for details of the
pre-quanta distributions. In the green pre-quanta block, the colour of the text indicates variables that are used
for ER (blue) or NR (red) only.

As outlined in [9], Flamedisx computes bounds on any non-observable dimensions of the
blocks for each observed event. Each block then has (conditional) probability elements evaluated
within those bounds, based on some probability distribution and model functions determining its
parameters. Many relevant approximations to speed up evaluation of probability elements are
handled automatically by TensorFlow Probability. The blocks are then multiplied together for
different values of energy 𝐸 , multiplied by 𝑅 𝑗 (𝐸) and the results summed together. In FlameNEST,
this sum has the following form:∑︁
𝐸,𝑒,𝛾,𝑖, 𝑗 ,𝑘,𝑙,𝑚,𝑛,...

𝑃(𝑆1|𝑖)𝑃(𝑖 | 𝑗)𝑃( 𝑗 | . . .) . . . 𝑃(𝑘 |𝛾)𝑃(𝑒, 𝛾 |𝐸)𝑅 𝑗 (𝐸)𝑃(𝑙 |𝑒) . . . 𝑃(𝑚 | . . .)𝑃(𝑛|𝑚)𝑃(𝑆2|𝑛).

(3.1)
By evaluating this sum, we obtain the differential event rate 𝑅 𝑗 (𝑆1, 𝑆2, 𝑥, 𝑦, 𝑧, 𝑡). Here, 𝑒 and
𝛾 are hidden variables representing the number of produced electrons and photons respectively,
whilst 𝑖, 𝑗 , 𝑘, 𝑙, 𝑚, 𝑛, . . . represent other hidden variables in the detector response model such as the
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number of electrons/photons detected, for example. The bounds are chosen such that each computed
probability element will contribute non-negligibly to the sum over probabilities. The procedure for
doing this is outlined in section 3.2.1, and validations of this are presented in section 4.1.

It should be noted that, in some places, NEST uses continuous distributions to model discrete vari-
ables, rounding each sampled value during MC simulation. This choice means that the FlameNEST
computation needs to include a continuity correction: instead of evaluating 𝑃(𝑋 = 𝑥), we evaluate

𝑃(𝑋 ≤ 𝑥 + 0.5) − 𝑃(𝑋 ≤ 𝑥 − 0.5). (3.2)

3.1.1 Pre-quanta

The pre-quanta stage encapsulates the conversion from an energy deposit to a number of produced
photons and electrons. The model functions determining the probability distribution parameters are
obtained from v2.2.2 of the NEST code [12], and we direct the reader to the references therein for fur-
ther details of the physics. Here we summarise the probability distributions used in each block, and will
direct the reader to appendix A for detailed model descriptions. For these models, we assume a cylindri-
cal TPC with a fixed fiducial volume of liquid, and only consider ER and NR events within the volume.

Incorporation of these NEST yield models into the Flamedisx framework was not possible with
a simple modification of the existing blocks coupled with a linear extension to additional blocks, as
for the post-quanta models detailed in section 3.1.2. Instead, two substantial modifications were
made to the block performing this computation, shown in green in figure 2. Firstly, its dimensionality
was increased by one internally contracted dimension, capturing the splitting into ions and excitons
before recombination occurs: the sum of ions and exictons is equal to the sum of electrons and
photons under the assumptions made in deriving the NEST models [14]. Secondly, a number of
these tensors are summed together over a set of relevant energies for each event, reflecting the
parameterisation of NEST’s yield models by ‘true’ energy deposition. This is in contrast to the
original Flamedisx models, where the yields are parameterised in terms of some pre-computed
number of net electrons and photons produced. Both of these modifications introduce memory usage
and performance challenges, discussed further in section 3.2.

Let us consider the pre-quanta model block for the ER case. A normal distribution is used to
model the fluctuations on the mean yields, producing 𝑛q

prod total quanta. From this, a binomial process
models a number of produced ions 𝑛i

prod. Finally, a skew normal distribution models the recombination
fluctuations leading to a produced number of electrons, 𝑛el

prod, such that we can then obtain a produced
number of photons, 𝑛ph

prod by subtracting 𝑛el
prod from the number of quanta produced, 𝑛q

prod. Both
the normal and skew normal distributions have continuity corrections accounted for, as NEST uses
continuous distributions and rounding to model discrete random variables. When dealing with the
skew normal distribution, we need to account for the additional constraint the NEST models impose,
that 𝑛el

prod ≤ 𝑛i
prod. This is done at the level of the distribution, and is detailed fully in appendix B.

In the NR case, a normal distribution models the production of 𝑛i
prod ions based on the mean

yield, with a further normal distribution modelling the difference between the produced number of
total quanta 𝑛

q
prod and the value of 𝑛i

prod. We can now obtain 𝑛el
prod which is modelled identically to

the ER case, with just the forms of the model functions determining the parameters being different.
Continuity corrections are applied here for all three distributions.

– 6 –
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We construct the green tensor in figure 2 over suitable hidden variable values of the 3 dimensions
(𝑛el

prod, 𝑛
ph
prod, 𝑛

i
prod). A fourth dimension is included if events are grouped into batches. This tensor is

constructed for a specific value of the energy, 𝐸 . Each element is then the product of the 3 probability
elements: 𝑃(𝑛q

prod |𝐸), 𝑃(𝑛
i
prod |𝐸), and 𝑃(𝑛el

prod |𝐸) for either ER or NR sources, where we indicate
the explicit dependence on energy but not the other conditional dependencies seen in figure 2, which
are different for ER and NR. Energy dependence enters at the level of the mean electron, photon,
exciton and ion yields, which are used in calculating distribution parameters, outlined more clearly
in appendix A.2.

Contracting each of these tensors internally over the 𝑛i
prod dimension results in a tensor over

(𝑛el
prod, 𝑛

ph
prod) which is constructed of probability elements 𝑃(𝑛el

prod, 𝑛
ph
prod |𝐸), defined as the probability

of a certain ER or NR energy deposit to produce 𝑛el
prod electrons and 𝑛

ph
prod photons, given the energy

𝐸 of the deposit. For each event, we multiply this at each energy by the value of the interaction rate
spectrum of the 𝑗 𝑡ℎ source, 𝑅 𝑗 (𝐸), which may also be a function of event position and time for
certain sources. We henceforth refer to this quantity as the energy spectrum. We then multiply this
with the post-quanta blocks and repeat over 𝑅 𝑗 (𝐸). By summing these results together, we obtain
𝑅 𝑗 (𝑆1, 𝑆2, 𝑥, 𝑦, 𝑧, 𝑡). This can be repeated for all events, and all relevant signal/background sources,
to allow for computation of the likelihood of the dataset. More detail on this is given in [9].

3.1.2 Post-quanta

The post-quanta stage encapsulates the detection of the produced electrons/photons, as described in
section 2. We currently seek only to emulate NEST’s ‘parametric’ S1 calculation mode, where a
detection threshold is not applied to individual PMT hits; rather, the DPE effect and a parametric
detection efficiency is applied to the sum of detected photons. This leads to a marginally less accurate
calculation at very low S1 signal sizes. We intend to incorporate the full calculation in a future
version of FlameNEST, though encapsulating it within the tensor framework is not straightforward.

The first block in the lower row of the post-quanta blocks in figure 2 represents the binomial
process which describes the number of photons detected, 𝑛ph

det, given the number of photons produced,
𝑛

ph
prod, with a position-dependent detection probability. Detector threshold effects are also applied

at this stage by introducing a minimum photon cut. It should be noted that the minimum photon
cut is applied to the total number of detected photons, not accounting for the expected distribution
of photons across PMTs, a feature modelled more fully by NEST and used in many experimental
analyses. This will be implemented in future FlameNEST versions. The next block describes the
binomial process by which the DPE effect may lead to a single detected photon producing two
photoelectrons. The total number of photoelectrons is denoted 𝑛

phel
prod. This is followed by a binomial

process which links 𝑛
phel
prod to a number of detected S1 photoelectrons, 𝑛phel

det . Finally, we apply a
Gaussian smearing to 𝑛

phel
det to obtain S1, representing the PMT single photoelectron resolution

coupled with additional terms to approximate other PMT effects and electronics noise. Acceptance
cuts can then be applied to the final S1 signal.

The first block in the upper row of the post-quanta blocks in figure 2 represents the binomial
electron survival process during drift, whereby an electron may be lost due to interactions with
impurities in the LXe. The number of electrons extracted to the gas region from the 𝑛el

prod produced
electrons in the liquid region is denoted 𝑛el

det. The efficiency of extraction is calculated within the

– 7 –
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NEST models from the gas field; additional nuisance parameters could be introduced here if the
user wishes to include uncertainties on this. As previously discussed, these extracted electrons
produce electroluminescence in the xenon gas. The number of photons produced from this process is
denoted 𝑛

S2-ph
prod , with the process being described by a normal distribution with a continuity correction

applied. We use another binomial, again with position-dependent detection efficiencies, to model
the detection of a number 𝑛S2-ph

det of these photons. We introduce the DPE effect identically to the S1
case, leading to 𝑛S2-phel photoelectrons. A Gaussian smearing is applied to model the final S2 signal,
in the same vein as for S1, before acceptance cuts can be applied.

3.2 Performance features

The modifications made to Flamedisx to fully capture the NEST models introduced a substantial
speed penalty to the computation, necessitating the implementation of a number of additional features
to mitigate this. This section details these performance features.

3.2.1 Generalising bounds computations

As discussed in section 3.1, for each data event Flamedisx must compute bounds on each hidden
variable, determining the size of the tensors constructed. These must be large enough that all
probability elements contributing non-negligibly to the sum in equation 3.1 are included, but not
so large as to be redundantly including elements contributing close to 0. Flamedisx’s original
implementation of this needed improvement for two reasons: firstly, the calculations did not fully
account for fluctuations in all distributions, and so the bounds had to be made particularly wide to
ensure that full range of relevance of each hidden variable was captured; secondly, the calculation to
produce the bounds needed to be reproduced each time a new model block was added, which in the
case of some of the additional blocks added for FlameNEST was non-trivial.

We generalised the bounds computation procedure in Flamedisx to calculate the bounds for
each block’s input hidden variable, 𝐼, based on already calculated bounds for each block’s output
hidden variable, 𝑂. Bayes’ theorem states

𝑃(𝐼 = 𝑖 |𝑂 = 𝑜) = 𝑃(𝑂 = 𝑜 |𝐼 = 𝑖)𝑃(𝐼 = 𝑖)
𝑃(𝑂 = 𝑜) , (3.3)

where the probability 𝑃(𝑂 = 𝑜 |𝐼 = 𝑖) is evaluated across the support of the input hidden variable,
or some sensible restriction of this domain, for the already calculated bound values of the output
hidden variable; that is, to calculate the lower bound on 𝐼, the lower bound of 𝑂 would be used,
taking the converse for the upper bound. The prior probability 𝑃(𝐼 = 𝑖) is by default flat, but certain
blocks can override this when it improves the bound calculation procedure to do so. The prior is
estimated via drawing values of the hidden variable 𝐼 from a large MC reservoir generated once
during FlameNEST’s runtime, filtering as appropriate based on already computed bounds. An
example of this for the FlameNEST block structure is given shortly.

Bounds on 𝐼 can then be obtained by constructing the cumulative distribution function
of the posterior probability 𝑃(𝐼 = 𝑖 |𝑂 = 𝑜), here denoted 𝑓 (𝑖), over the support of 𝐼, 𝑖 ∈
{support( 𝑓 )min, support( 𝑓 )max},

𝐹 (𝑥) = 1
N

𝑥∑︁
𝑖=support( 𝑓 )min

𝑓 (𝑖), (3.4)
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with an appropriate normalisation factor N chosen such that 𝑓 (𝑖) is normalised to 1 and we can set
the denominator in equation 3.3 to unity. The lower and upper bounds are then taken as the values of
𝑥 where 𝐹 (𝑥) evaluates to some user-defined low and high values of probability, where taking more
extreme values corresponds to calculating wider bounds. This is depicted pictorially in figure 3.

Figure 3. Pictorial demonstration of the bounds computation for a block. The lower and upper bounds on the
output dimension, 𝑂, are used to determine the input distributions, 𝑃(𝐼 = 𝑖, 𝑂 = 𝑜max) and 𝑃(𝐼 = 𝑖, 𝑂 = 𝑜min),
respectively, represented here as the black curves. We can determine the lower and upper bounds on the input
dimension using these distributions depending on the max sigma chosen by the user. The final tensor is shown
as a black box.

The method proceeds by computing the bounds for each block recursively — bounds on the
outermost hidden variables are computed based on the observables, then the procedure outlined is
repeated for each preceding block in turn until bounds are computed on all hidden variables. In the
case of the FlameNEST block structure, we make two modifications to the above procedure, made to
improve the accuracy of the tensor and energy stepping outlined in sections 3.2.2 and 3.2.3.

The first is making a manual calculation of the ion bounds. As we construct the central quanta
tensor for various values of the energy, contracting over the ion dimension for each before summing
them together, it is possible to choose the ion bounds to be different for each summed energy.
Therefore the ion bounds are estimated directly as a function of energy for each summed tensor, as
outlined in appendix C. Whilst in principle the Bayesian procedure could be used instead, it was
found that a manual calculation in this case substantially improved performance, being of reliable
accuracy due to the proximity of this hidden variable to the input dimension, energy.

The second change is that an additional bounds estimation is made for the energy values to be
summed over when constructing the central quanta tensor. This is done by filtering an MC reservoir
of electrons and photons produced from the source whose differential rate is being computed within
the calculated electron/photon production bounds for each event. The distribution of energies from
the remaining events is then used to estimate energy bounds by taking user-defined quantiles.

One can summarise the bounds computation for the FlameNEST block structure as follows. We
use the Bayesian inversion procedure to calculate bounds for all hidden variables in the post-quanta
blocks of figure 2, taking flat priors in each case. We then compute preliminary bounds on electrons
and photons produced using the same procedure, taking a flat prior. Once these have been obtained,
energy bounds can be obtained for each event using the procedure detailed above. These energy

– 9 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
0
8
0
1
2

bounds are then used together with the bounds on the outermost hidden variables — S1 and S2
photoelectrons detected — to obtain priors on electrons and photons produced. These are then used
to obtain a second, tighter set of bounds on electrons and photons produced. Finally, ion bounds are
computed using the procedure outlined in appendix C.

3.2.2 Variable tensor stepping

Originally, Flamedisx would construct each hidden variable dimension in integer steps of 1 between
the computed bounds. This size of the tensors for high energy events, even for the original Flamedisx
models, would thus become too large to fit in memory on many GPUs. For FlameNEST, the
introduction of a number of additional post-quanta model blocks, as well as the pre-quanta block
with an internally contracted dimension, greatly compounded this problem. In order to allow
TensorFlow to hold all the tensors for the computation in memory and to speed up the Flamedisx
computation, we implemented a variable stepping over the hidden variables.

A maximum size may be specified for any set of hidden variables, and if the difference between
the upper and lower bounds for any events is greater than this, the tensors constructed for that event
batch will have hidden variable dimensions increasing in integer steps greater than 1. These steps are
chosen such that no hidden variable dimension goes above its maximum dimension size. Provided
that all distributions computed over a stepped hidden variable are sufficiently smoothly varying over
the stepped values, each calculated probability element may simply be re-scaled by the step size of
its domain, with the overall computation then returning a result approximately the same as if no
stepping had been done. Distributions of hidden variables can be inspected using FlameNEST’s MC
generation tools to verify this, with quantitative validations such as that in section 4.1 confirming
that appropriate maximum dimension sizes have been chosen.

3.2.3 Variable energy stepping

As detailed in sections 3.1 and 3.2.1, the green quanta tensor in figure 2 is constructed across energies
between the energy bounds for each source/event pair. Provided the energy bounds are chosen to be
wide enough, terms outside of the bounds will contribute negligibly to the sum over 𝐸 in equation 3.1.

To further accelerate the computation, provided that the shape of the source’s energy spectrum is
smoothly varying within these bounds, it is possible to obtain an accurate value of 𝑅 𝑗 (𝑆1, 𝑆2, 𝑥, 𝑦, 𝑧, 𝑡)
by taking larger steps in 𝐸 in the sum, re-weighting each 𝑅 𝑗 (𝐸) by the step size taken relative to
the energy granularity of the spectrum. This is analogous to the variable tensor stepping described
in section 3.2.2. Quantitative validations such as that in section 4.2 can verify that this has been
done appropriately.

3.2.4 Model-dependent approximations

As discussed in sections 3.1.1 and 3.1.2, it is necessary to apply continuity corrections and account
for the constraint that 𝑛el

prod ≤ 𝑛i
prod to ensure good matching between the FlameNEST model

implementation and the NEST MC models. However, above certain energy thresholds this becomes
redundant, and has little effect on the accuracy of the computation. Therefore, both of these aspects
are ignored when calculating quanta tensors above 5 keV for ER sources and 20 keV for NR sources.
For current and future detectors with conditions different from the LUX defaults, the user may wish
to verify that these thresholds remain sensible choices.

– 10 –
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4 Validations

For the performance features outlined in section 3.2 to be used in practise, in must first be verified
that they still produce accurate computed values of 𝑅 𝑗 (𝑆1, 𝑆2, 𝑥, 𝑦, 𝑧, 𝑡) for all sources { 𝑗} of interest
at a range of energies, whilst providing ample speedup to the computation. This section presents the
results of a series of such validations.

4.1 Mono-energetic sources

In order to validate the FlameNEST computation, we compare the differential rate computed with
FlameNEST directly with an estimation from a finely binned, high statistics MC simulation using
NEST v2.2.2 at 1, 10, and 100 keV energies. We use NEST to fill a two-dimensional histogram
of (S1, S2) using mono-energetic sources at a fixed event position (the detector centre) and time,
to avoid the computational cost of achieving sufficient simulation statistics with a 6-dimensional
template, a reminder of why the Flamedisx computation is superior to a template computation.
We set all parameters to the NEST defaults, which are based on the LUX detector’s third science
run [15]. The histogram is filled with 1 × 108 NEST events with 50 logarithmically-spaced bins in
both dimensions.

We pass the central (S1, S2) values for each bin along with the fixed position and time to the
FlameNEST differential rate computation, giving us the differential rate at the centre of each bin.
We then estimate the differential rate for each bin using the NEST Monte Carlo. We do this by
taking the fraction of total events simulated falling within each bin, dividing by the bin volumes, and
scaling by the expected number of events before selection cuts, which in our case is scaled to be 1.

We then calculate the difference between the differential rate estimated from the NEST-filled
histogram and the FlameNEST differential rate, normalised by an estimate of the error in calculating
the differential rate using a histogram. This includes an estimation of the (Poisson) error from
finite simulation statistics in each bin, assuming bins are uncorrelated, and an estimation of the
binning/discretisation error, obtained from the variation of the FlameNEST differential rate between
the corners of each bin.

In the FlameNEST computation we take 3𝜎 bounds, such that the Bayesian bounds procedure
uses probability corresponding to the 3𝜎 quantile of a Gaussian distribution, and choose all tensors
to have a maximum dimension size of 70. Whilst these approximations will introduce some
error in the calculation compared to the idealised case of infinite bounds and no stepping, if the
difference between the FlameNEST result and a Monte Carlo template-estimated differential rate is
sufficiently small, this can be accepted. The reason for this is twofold; firstly, parameters in the NEST
models come with, in some cases, very large errors, and shifts in the differential rate coming from
approximations in the FlameNEST computation can be absorbed by small shifts in these parameters.
Secondly, MC templates come with their own errors: errors from finite simulation statistics, binning,
and template interpolation as nuisance parameters are floated, meaning small errors in likelihood
evaluation are not unique to FlameNEST.

Figure 4 and 5 show the comparison described above for mono-energetic ER and NR sources,
respectively. Both ER and NR sources at all energies show a good agreement. Any small offsets or
shape to the distributions are a result of the finite tensor bounds and the tensor stepping outlined in
section 3.2, however they are within the errors inherent to template-based likelihood evaluation.
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Figure 4. Difference between the FlameNEST and MC template differential rate for bins in S1/S2 space for 1,
10 and 100 keV mono-energetic ER source, fixed at the centre of the LUX detector, presented in terms of the
estimated Poisson statistics + binning error from the MC template calculation.

We recommend this validation process is repeated when further model changes are implemented
in FlameNEST. Smaller changes to models might not carry the same significance at all energies
so we also recommend a wide scan in energy space. Whilst some of the NEST models have been
validated up to the O(MeV) energies relevant for other physics searches with liquid xenon TPCs
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Figure 5. Difference between the FlameNEST and MC template differential rate for bins in S1/S2 space for 1,
10 and 100 keV mono-energetic NR source, fixed at the centre of the LUX detector, presented in terms of the
estimated Poisson statistics + binning error from the MC template calculation.

including neutrinoless double beta decay [16], validation of the FlameNEST computations at these
energies is deferred for future work. Our current focus has been on validating that the framework can
be used at energies relevant WIMP search, likely the first science to come out of current-generation
experiments.
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4.2 Full energy spectra

As described in section 3.2.3, FlameNEST will step over the energies remaining once the input
spectrum of the source has been trimmed between the calculated energy bounds for each event (or
batch of events). Here, we demonstrate how this stepping impacts the speed and accuracy of the
computation. For ER and NR sources we run the same computation as in section 4.1, this time
simulating a flat energy spectrum between 0–100 keV using NEST. When doing the FlameNEST
computations we vary the maximum energy dimension size — this caps the size of the trimmed
spectrum between the energy bounds, applying a stepping if the size of the trimmed spectrum is
above the specified maximum. We set the full flat spectra used in the FlameNEST computation
to be a comb of delta functions at 1000 points uniformly spaced in the energy range. All other
parameters are the same as described in section 4.1, except for the maximum dimension size of the
ions produced dimension, which is now capped at 30. We found that the resulting speed increase
justified the minimal loss in accuracy of the FlameNEST computation, especially when the effects
on accuracy of the energy stepping are accounted for.

To quantify the overall accuracy at different maximum energy dimension sizes, we define an
accuracy metric, Δ, over the template bins to be a weighted average over all bins of the percentage
difference in differential rate between the FlameNEST computation and the template evaluation,
weighted by the averaged differential rate of that bin, as in equation 4.1. The weights of the sum, i.e.
the average differential rate between FlameNEST and the template, cancel with the denominator in
the percentage difference for each bin, giving the expression a simple form. Here, 𝑅(S1, S2)FN/MC

denotes the differential rate at the bin with centre (S1, S2) using the FlameNEST / Monte Carlo
template evaluation, and the sum is over all template bins. We chose this over the accuracy metric
used in section 4.1 to mitigate the fact that for templates very large in S1/S2 space, the method we
used for estimating the Poisson errors begins to break down, and the correlation between bins due to
discretisation begins to manifest as an offset in the residuals plot due to the inclusion of an estimate
of the errors coming from this discretisation. This choice of metric also avoids the issue of most
bins being empty for templates covering the full observable space when using such a broad energy
spectrum.

Δ =

∑
S1,S2(𝑅(S1, S2)MC − 𝑅(S1, S2)FN)∑

S1,S2
1
2 (𝑅(S1, S2)MC + 𝑅(S1, S2)FN)

× 100% (4.1)

Figures 6 and 7 present the resulting accuracy metric value for each energy maximum dimension
size, plotted against the computation time to evaluate the FlameNEST differential rate across bins
for the ER and NR spectra shown. The computation is repeated for 10 separate NEST templates to
estimate the variation seen. Bins with 0 MC template events are discarded from the computation;
after doing so, approximately 1000 bins remained for the ER source and approximately 1750 bins
remained for the NR source, out of 2500 bins used. The difference is a consequence of the different
aspect ratios of the ER and NR bands. We benchmark using a Tesla P100 GPU.

Unsurprisingly the computation time increases as more energy steps are added, though perfect
linearity is not seen as the number of events (bins) per computational batch is altered each time to
maximise usage of the GPU memory. The accuracy metric behaves as expected; it is up to the user
to decide the desired degree of accuracy, and to pay the corresponding cost in computation time.
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Figure 6. Accuracy metric vs full computation time for a range of different maximum energy dimension sizes
for an NR source with a flat energy spectrum between 0.01 and 100 keV, using LUX detector parameters and
fixed at the centre of this detector. The resulting (S1,S2) template used for one of the 10 comparisons is also
shown. Approximately 1750 bins are used for the computation after the empty bins are removed.

Figure 7. Accuracy metric vs full computation time for a range of different maximum energy dimension sizes
for an ER source with a flat energy spectrum between 0.01 and 100 keV, using LUX detector parameters and
fixed at the centre of this detector. The resulting (S1,S2) template used for one of the 10 comparisons is also
shown. Approximately 1000 bins are used for the computation after the empty bins are removed.

Saturation in time and accuracy is ultimately seen above a maximum energy dimension size; this
happens when (for the majority of bins) the size of the input spectrum within the energy bounds is
smaller than this maximum dimension size, rendering energy stepping redundant here. At this stage
the remaining discrepancy in differential rate comes down to the other approximations made; the
tensor stepping, the hidden variable and energy bounds computations and the number of terms used
in the expansion of Owen’s T function, the calculation of which is necessary for the FlameNEST
models (see appendix B).

The calculated accuracy metric will differ for energy spectra with more features; here, the user
would likely want to implement a variable maximum energy dimension size, taking it to be larger

– 15 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
0
8
0
1
2

Figure 8. MC and FlameNEST differential rates over S2 bins of 3 different S1 slices of the templates shown
in figures 6 and 7. We calculate the FlameNEST differential rates at two different maximum energy dimension
sizes, to show the effect of this. We also depict for each bin the estimated Poisson statistics + binning error
from the MC template calculation.

for events where the energy bounds cover regions of the spectrum with more features. Performing
this same test would then allow them to validate that they are achieving sufficient accuracy for their
source spectra.

Our choice to use a signed (weighted averaged) percentage difference as our accuracy metric
has the potential to mask discrepancies if they are very large in every bin but average out across bins.
To verify that this is not the case, we show in figure 8 the MC differential rate over S2 bins of 3
different S1 slices in each template, depicting also for each bin the estimated Poisson statistics plus
binning error from the MC template calculation. We overlay the FlameNEST differential rates at two
different maximum energy dimension sizes; a poor choice for each as well as the choice for each that
takes the corresponding accuracy metric value below 1%. Clearly the discrepancy manifests visually
as an overall shift, supporting our choice of accuracy metric. As expected, for the higher maximum
dimension sizes, no discrepancy is visible beyond the MC errors, whereas for the low maximum
dimension size (and thus greater sized energy spectrum steps), a significant shift is observed.

Finally, we wish to provide an absolute measure of the performance of FlameNEST. For a
0–10 keV ER source using a Tesla P100 GPU, we measure a differential rate computation time
of 30ms per event, using a choice of 50 for the maximum energy dimension size following our
findings in figure 7. It is important to reiterate that likelihood evaluation with 6 observables
and multiple nuisance parameters is simply unfeasible using template methods, as the generation
timescales for these templates become geological in magnitude. Whilst the evaluation of the
likelihood here scales with the number of events, this method enables likelihood evaluations that
would have an insurmountable barrier to overcome if template generation were required. The vastly
improved accuracy and applicability of the NEST models in the Flamedisx framework enables such
computations to be performed confidently in a range of experiments, justifying the slowdown in
comparison to the original Flamedisx models. It should also be noted that for the time-consuming
step of test statistic estimation, asymptotic estimation methods can be appealed to, and further
optimisations may be possible even in the case of doing the full MC toy estimation procedure, as
long as the accuracy is carefully tracked.
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5 Conclusion

We present FlameNEST, an amalgamation of Flamedisx and NEST. The technical challenges of
this union and the subsequent performance has been described in detail. FlameNEST will allow
for high-dimensional likelihood evaluation, increasing the physics reach of LXe dual phase TPC
experiments. Furthermore, the incorporation of the NEST models will reduce the need for involved
modifications of the default models — designed for a specific detector and its conditions — when
fitting real experimental data across a variety of detectors and potential variations in their operating
conditions.

Inter-collaboration analyses have in the past been difficult due to software differences and
the ways different experiments handle their nuisance parameters. We believe FlameNEST will
make future inter-collaboration efforts much simpler by providing a robust framework which can
be straightforwardly adapted to each experiment. The connections made with inter-collaboration
analyses for current generation experiments will greatly facilitate the development of the next
generation of noble element detection experiments, which in the case of LXe experiments will likely
consist of a single, unified effort focused on one detector [17].

We point the reader to https://github.com/FlamTeam/flamedisx, where all of the
FlameNEST code can be found within the original Flamedisx repository. Whilst FlameNEST
can be run wihtout a GPU, we do not reccomend this for fitting with complex energy spectra or large
numbers of events, due to the significant performance drop on a CPU. If GPUs are used, it should be
noted that larger memory devices will enable larger batches of events to be computed and thus speed
up the computation.
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A Model details

Here we provide a detailed description of the distributions and parameters in the FlameNEST block
structure.

A.1 Model parameters

In this section, we will define the parameters which are used in the FlameNEST distributions.
Table 1 lists the detector parameters which are typically measured or fixed and therefore unlikely

to be floated as nuisance parameters in an analysis. It should be noted that the liquid electric field
can in principle be position- and time-dependent.
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Table 1. Physical, likely fixed, inputs to the FlameNEST model functions.
Symbol Meaning

𝑇 LXe temperature
𝑃 LXe pressure

𝜖liq(𝑥, 𝑦, 𝑧, 𝑡) Liquid electric field
𝜖gas Gas electric field

𝑧topDrift Liquid/gas interface height
Δgas Distance between liquid/gas interface and

anode
𝑁PMT Number of PMTs

NEST uses some of the parameters in table 1 to calculate other fixed parameters used by the
model functions. These are summarised in table 2.

Table 2. Calculated, likely fixed, quantities in the FlameNEST model functions.
Symbol Meaning
𝜌liq(𝑇, 𝑃) Liquid xenon density
𝜌gas(𝑇, 𝑃) Gaseous xenon density

𝑣drift(𝜖liq, 𝜌liq, 𝑇) Electron drift velocity

Table 3 lists the parameters used by the model functions calculating the parameters of the yield
probability distributions. They are all, directly or indirectly, functions of energy 𝐸 , hence the need
for the green tensor in figure 2 to be constructed for all relevant energies for an event and summed
together.

Mean yields are calculated deterministically for both electrons and photons, along with the
ratio of mean exciton yield to mean ion yield. The parameter 𝛼, used as a distribution parameter
for ER and NR, is defined as 𝛼 = (1 + 𝑟ex)−1. The ER case calculates a ‘Fano factor’ to model
over-dispersion in quanta production beyond Poisson statistics. Finally a number of parameters are
calculated for modelling electron-ion recombination fluctuations. The parameters for both the ER
and NR cases are functions of a number of (different) underlying nuisance parameters, which would
likely be floated in a computation in the same way as the parameters in table 4.

The post-quanta model functions take a number of parameters that will likely only be determined
approximately by auxiliary measurements and thus could be floated as nuisance parameters in a
statistical analysis. Whilst many of these can be very well-constrained, treating them as effective
parameters and allowing them to float may be necessary to achieve good fits to data when using
these parametric models that don’t fully model PMT pulse production. Table 4 lists these.

A ‘Fano factor’ is used to account for an over-dispersion in S2 electroluminescence photons
produced beyond Poisson statistics. The photon detection efficiencies determine the (binomial)
detection probabilities for photons produced in liquid (S1) and gas (S2). Similarly the photoelectron
detection efficiency determines the (binomial) detection probability for a single PMT to detect an
(S1) photoelectron. The single photoelectron resolution coupled with the S1 and S2 noise terms
determines the smearing of the final signals for a given number of detected photoelectrons due to
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Table 3. Parameters for the FlameNEST yield distribution model functions.
Symbol Meaning
𝑛el(𝐸) Electron mean yield
𝑛q(𝐸) Electron + photon mean yield
𝑟ex(𝐸) Ratio of mean exciton yield to mean ion yield
FER(𝑛q) ER Fano factor

𝑃rec(𝑛el, 𝑛q, 𝑟ex) Electron-ion recombination probability
b (𝑛q) Electron-ion recombination skewness

parameter
𝜎rec(𝑛el, 𝑛q, 𝑃rec, 𝑛

i
prod) Electron-ion recombination width

𝛿𝜎(b) Electron-ion recombination width correction
𝛿`(b, 𝜎, 𝛿𝜎) Electron-ion recombination mean correction

PMT effects and electronics noise.

Table 4. Parameters that a user may wish to float in the post-quanta FlameNEST model functions.
Symbol Meaning
𝑃dpe Double photoelectron emission probability
𝜏 Electron lifetime
FS2 S2 Fano factor
𝑔1 Photon detection efficiency in liquid at detector

centre
𝑔1gas Photon detection efficiency in gas
`spe Single photoelectron detection efficiency
𝜎spe Single photoelectron resolution
ΔS1 S1 noise
ΔS2 S2 noise

Acceptance cuts are applied to the detected signals which may be accounted for in the models
in the same way as the original Flamedisx structure. Parameters determining these are summarised
in table 5. The minimum photon cut currently approximates a PMT hit coincidence requirment.
A better approximation to this, using an additional binomial process, will be implemented in the
near future.

A.2 Pre-quanta models

In this section, we provide the full description of the pre-quanta models implemented in FlameNEST.
Equations (A.1)–(A.3) list the probability distributions used to calculate the pre-quanta model block
in the ER case. Throughout this section and section A.3, we use the following notation: Normal
denotes a normal distribution, Binom a Binomial distribution and SkewNormal a skew normal
distribution. A tilde denotes an applied continuity correction, whilst a hat denotes the condition
𝑛el

prod ≤ 𝑛i
prod discussed in the main text being applied at the level of the distribution. This is detailed
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Table 5. Selection parameters.
Symbol Meaning
𝑆1min Minimum S1 acceptance
𝑆1max Maximum S1 acceptance
𝑆2min Minimum S2 acceptance
𝑆2max Maximum S2 acceptance
𝛾min Minimum photons detected

more in appendix B.

𝑃(𝑛q
prod |𝑛q)ER = �Normal

(
𝑛

q
prod |𝑛q,

√︃
FER𝑛q

)
(A.1)

𝑃(𝑛i
prod |𝑛

q
prod)ER = Binom

(
𝑛i

prod |𝑛
q
prod, 𝛼

)
(A.2)

𝑃(𝑛el
prod |𝑛

i
prod)ER = �SkewNormal

(
𝑛el

prod | (1 − 𝑃rec)𝑛i
prod − 𝛿`,

𝜎rec
𝛿𝜎

, b

)
(A.3)

The distributions used to calculate the pre-quanta model block for NR interactions are listed in
equations (A.4)–(A.6). We currently do not include Fano factors in equations. (A.4) and (A.5), as
allowed for within the NEST code, as both are set by default to 1, but in principle these could easily
be added and included as additional nuisance parameters. As disscussed in section 3.1.1, excitions
do not need to be tracked as the number of these is fixed by the number of elctrons, photons and ions.

𝑃(𝑛i
prod |𝑛q)NR = �Normal

(
𝑛i

prod |𝛼𝑛q,
√︁
𝛼𝑛q

)
(A.4)

𝑃(𝑛q
prod |𝑛q, 𝑛i

prod)NR = �Normal
(
𝑛

q
prod − 𝑛i

prod |𝛼𝑛q𝑟ex,

√︃
𝛼𝑛q𝑟ex

)
(A.5)

𝑃(𝑛el
prod |𝑛

i
prod)NR = �SkewNormal

(
𝑛el

prod | (1 − 𝑃rec)𝑛i
prod − 𝛿`,

𝜎rec
𝛿𝜎

, b

)
(A.6)

A.3 Post-quanta models

In this section, we provide the precise post-quanta model descriptions implemented in FlameNEST.
Equations A.7 to A.10 list the distributions describing the blocks going from produced photons to
S1 signal, depicted in the lower row of the post-quanta blocks in figure 2. It should be noted that
the original NEST models perform the final smearing as a two-step process, whereas we use the
well-known property of two subsequent normal smearings to model this as a single step, adding the
variances in quadrature.

𝑃(𝑛ph
det |𝑛

ph
prod) = Zph(𝑛ph

det, 𝛾min) Binom
(
𝑛

ph
det |𝑛

ph
prod, 𝑔1 𝑓S1(𝑟, 𝑧)

)
(A.7)

𝑃(𝑛phel
prod |𝑛

ph
det) = Binom

(
𝑛

phel
prod − 𝑛

ph
det |𝑛

ph
det, 𝑃dpe

)
(A.8)

𝑃(𝑛phel
det |𝑛

phel
prod) = Binom

(
𝑛

phel
det |𝑛

phel
prod, 𝑃spe(`spe, 𝑁PMT)

)
(A.9)

𝑃(𝑆1|𝑛phel
det ) = bS1(𝑆1, 𝑆1min, 𝑆1max) Normal

(
𝑆1|𝑛phel

det ,

√︃
𝜎2

spe𝑛
phel
det + Δ2

S1(𝑛
phel
det )2

)
(A.10)
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Equations A.11 to A.15 list the distributions corresponding to the upper row of post-quanta
model blocks in figure 2, going from produced electrons to S2 signal.

𝑃(𝑛el
det |𝑛

el
prod) = Binom

(
𝑛el

det |𝑛
el
prod, [

el(𝑧, 𝑧topDrift, 𝑣drift, 𝜏, 𝜖gas)
)

(A.11)

𝑃(𝑛S2-ph
prod |𝑛el

det) = �Normal
(
𝑛

S2-ph
prod |`el(𝜖gas, 𝜌gas,Δgas)𝑛el

det, 𝜎el(𝜖gas, 𝜌gas,Δgas, FS2)
√︃
𝑛el

det

)
(A.12)

𝑃(𝑛S2-ph
det |𝑛S2-ph

prod ) = Binom
(
𝑛

S2-ph
det |𝑛S2-ph

prod , 𝑔1gas 𝑓S2(𝑟)
)

(A.13)

𝑃(𝑛S2-phel |𝑛S2-ph
det ) = Binom

(
𝑛S2-phel − 𝑛

S2-ph
det |𝑛S2-ph

det , 𝑃dpe

)
(A.14)

𝑃(𝑆2|𝑛S2-phel) = b𝑆2(𝑆2, 𝑆2min, 𝑆2max) Normal
(
𝑆2|𝑛S2-phel,

√︃
𝜎2

spe𝑛
S2-phel + Δ2

S2(𝑛S2-phel)2
)

(A.15)

B Modified skew Gaussian to implement NEST constraint

As discussed in the main text, NEST implements the condition that 𝑛el
prod ≤ 𝑛i

prod. We account for
this in FlameNEST by modifying the skew Gaussian PDF as follows. The PDF for a standard skew
Gaussian distribution with mean `, standard deviation 𝜎 and skewness parameter 𝛼 takes the form

𝑓 (𝑥; `, 𝜎, 𝛼) = 1
√

2𝜋𝜎2
exp

(
− (𝑥 − `)2

2𝜎2

) (
1 + erf

[(
𝛼

√
2𝜎

)
(𝑥 − `)

] )
. (B.1)

In FlameNEST, we modify this to read

𝑓 (𝑥; `, 𝜎, 𝛼, 𝑙) =


1√

2𝜋𝜎2 exp
(
− (𝑥−`)2

2𝜎2

) (
1 + erf

[(
𝛼√
2𝜎

)
(𝑥 − `)

] )
𝑥 < 𝑙

1 −
{

1
2

(
1 + erf

[
𝑥−`√

2𝜎

] )
− 2𝑇

( 𝑥−`
𝜎

, 𝛼
)}

𝑥 = 𝑙

0 𝑥 > 𝑙

(B.2)

where 𝑥 maps to 𝑛el
prod and 𝑙 to 𝑛i

prod. The term in curly brackets in the 𝑥 = 𝑙 case is the cumulative
distribution function (CDF) of the skew Gaussian distribution, and 𝑇 is Owen’s 𝑇 function [18]. This
has the effect of ‘re-dumping’ all probability mass for 𝑥 > 𝑙 into the probability mass at 𝑥 = 𝑙, once
a continuity correction is applied as in equation 3.2, which is an appropriate capturing of NEST’s
MC behaviour, setting any sampled 𝑛el

prod > 𝑛i
prod to be equal to 𝑛i

prod.
Implementing this as a TensorFlow computation required adding a custom distribution to the

TensorFlow Probability library [10]. Of particular importance was an efficient evaluation of
Owen’s 𝑇 function 𝑇 (ℎ, 𝑎), which is the integral

𝑇 (ℎ, 𝑎) = 1
2𝜋

∫ 𝑎

0

𝑒−
1
2 ℎ

2 (1+𝑥2)

1 + 𝑥2 𝑑𝑥. (B.3)

In our case 𝑎 ≥ 0. Owen proved the relation [18]

𝑇 (ℎ, 𝑎) = 1
2
Φ(ℎ) + 1

2
Φ(𝑎ℎ) −Φ(ℎ)Φ(𝑎ℎ) − 𝑇

(
𝑎ℎ,

1
𝑎

)
, (B.4)

– 21 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
0
8
0
1
2

where Φ is the CDF of the standard normal distribution, and so we can always recast 𝑇 (ℎ, 𝑎) to be in
0 ≤ 𝑎 ≤ 1. It is then straightforward to perform a Taylor expansion in 𝑎

𝑇 (ℎ, 𝑎) = 1
2𝜋

{
tan−1(𝑎) +

∞∑︁
𝑖=1

𝐶𝑖

𝑎2𝑖−1

2𝑖 − 1

}
, (B.5)

where the coefficients are obtained recursively as

𝐶1 = 𝑒−
ℎ2
2 − 1,

𝐶𝑛+1 = −𝐶𝑛 + (−1)𝑛
( ℎ2

2 )𝑛

𝑛!
𝑒−

ℎ2
2 .

(B.6)

We determined that in our application of equation B.2 a sufficient degree of accuracy could be
obtained for all relevant parameter values with a truncation of the series at 𝐶2 for NR sources and 𝐶5

for ER sources. This is evident from the results in sections 4.1 and 4.2.

C Manual ion bound computation in FlameNEST

As discussed in the main text, for the FLameNEST block structure a manual calculation is done for
the ion bounds, constructing different bounds for each energy summed over in the quanta tensor. In
the ER case, the following quantities are first calculated, representing bounds on 𝑛

𝑞

prod, coming from
distribution in equation A.1,

𝑛
𝑞
upper = 𝑛𝑞 + 𝜎

√︁
F 𝑛𝑞 (C.1)

𝑛
𝑞

lower = 𝑛𝑞 − 𝜎
√︁
F 𝑛𝑞 . (C.2)

All symbols have the same meaning as in appendix A.1, and 𝜎 is a user-defined parameter
controlling the width of the bounds. It should be noted that energy enters implicitely in 𝑛𝑞. Upper
and lower bounds on the mean and standard deviation of the number of ions described by the
binomial of equation A.2 are then calculated as

`upper/lower = 𝑛
𝑞

upper/lower𝛼 (C.3)

𝜎upper/lower =
√︃
𝑛
𝑞

upper/lower𝛼(1 − 𝛼). (C.4)

In the NR case, the upper and lower bounds on the mean and standard deviation of the number
of ions described by the normal distribution of equation A.4 can simply be calculated as

`upper = `lower = 𝑛𝑞𝛼 (C.5)

𝜎upper = 𝜎lower =
√︁
𝑛𝑞𝛼. (C.6)

Then, upper and lower bounds on the number of ions can be calculated straightforwardly as

𝑛𝑖min = `lower − 𝜎𝜎lower (C.7)
𝑛𝑖max = `upper + 𝜎𝜎upper. (C.8)
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