72 research outputs found

    Identification of Stage-Specific Breast Markers using Quantitative Proteomics

    Get PDF
    YesMatched healthy and diseased tissues from breast cancer patients were analyzed by quantitative proteomics. By comparing proteomic profiles of fibroadenoma (benign tumors, three patients), DCIS (noninvasive cancer, three patients), and invasive ductal carcinoma (four patients), we identified protein alterations that correlated with breast cancer progression. Three 8-plex iTRAQ experiments generated an average of 826 protein identifications, of which 402 were common. After excluding those originating from blood, 59 proteins were significantly changed in tumor compared with normal tissues, with the majority associated with invasive carcinomas. Bioinformatics analysis identified relationships between proteins in this subset including roles in redox regulation, lipid transport, protein folding, and proteasomal degradation, with a substantial number increased in expression due to Myc oncogene activation. Three target proteins, cofilin-1 and p23 (increased in invasive carcinoma) and membrane copper amine oxidase 3 (decreased in invasive carcinoma), were subjected to further validation. All three were observed in phenotype-specific breast cancer cell lines, normal (nontransformed) breast cell lines, and primary breast epithelial cells by Western blotting, but only cofilin-1 and p23 were detected by multiple reaction monitoring mass spectrometry analysis. All three proteins were detected by both analytical approaches in matched tissue biopsies emulating the response observed with proteomics analysis. Tissue microarray analysis (361 patients) indicated cofilin-1 staining positively correlating with tumor grade and p23 staining with ER positive status; both therefore merit further investigation as potential biomarkers.Cyprus Research Promotion Foundation, Yorkshire Cancer Researc

    Tipping the Balance: Sclerotinia sclerotiorum Secreted Oxalic Acid Suppresses Host Defenses by Manipulating the Host Redox Environment

    Get PDF
    Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the ability of OA to both inhibit and promote ROS to achieve pathogenic success

    A Novel, Non-Apoptotic Role for Scythe/BAT3: A Functional Switch between the Pro- and Anti-Proliferative Roles of p21 during the Cell Cycle

    Get PDF
    BACKGROUND: Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. METHODS/PRINCIPAL FINDINGS: Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. CONCLUSION: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle.Dissertatio

    Disrupted autophagy undermines skeletal muscle adaptation and integrity

    Get PDF
    This review assesses the importance of proteostasis in skeletal muscle maintenance with a specific emphasis on autophagy. Skeletal muscle appears to be particularly vulnerable to genetic defects in basal and induced autophagy, indicating that autophagy is co-substantial to skeletal muscle maintenance and adaptation. We discuss emerging evidence that tension-induced protein unfolding may act as a direct link between mechanical stress and autophagic pathways. Mechanistic links between protein damage, autophagy and muscle hypertrophy, which is also induced by mechanical stress, are still poorly understood. However, some mouse models of muscle disease show ameliorated symptoms upon effective targeting of basal autophagy. These findings highlight the importance of autophagy as therapeutic target and suggest that elucidating connections between protein unfolding and mTOR-dependent or mTOR-independent hypertrophic responses is likely to reveal specific therapeutic windows for the treatment of muscle wasting disorders

    Tripping on Acid: Trans-Kingdom Perspectives on Biological Acids in Immunity and Pathogenesis

    Get PDF

    Trimethoprim-resistance and its transferability in E. coli

    No full text

    AtBAG7, an Arabidopsis Bcl-2–associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response

    Get PDF
    The Bcl-2–associated athanogene (BAG) family is an evolutionarily conserved, multifunctional group of cochaperones that perform diverse cellular functions ranging from proliferation to growth arrest and cell death in yeast, in mammals, and, as recently observed, in plants. The Arabidopsis genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. In the present study we show that an Arabidopsis BAG, AtBAG7, is a uniquely localized endoplasmic reticulum (ER) BAG that is necessary for the proper maintenance of the unfolded protein response (UPR). AtBAG7 was shown to interact directly in vivo with the molecular chaperone, AtBiP2, by bimolecular fluorescence complementation assays, and the interaction was confirmed by yeast two-hybrid assay. Treatment with an inducer of UPR, tunicamycin, resulted in accelerated cell death of AtBAG7-null mutants. Furthermore, AtBAG7 knockouts were sensitive to known ER stress stimuli, heat and cold. In these knockouts heat sensitivity was reverted successfully to the wild-type phenotype with the addition of the chemical chaperone, tauroursodexycholic acid (TUDCA). Real-time PCR of ER stress proteins indicated that the expression of the heat-shock protein, AtBiP3, is selectively up-regulated in AtBAG7-null mutants upon heat and cold stress. Our results reveal an unexpected diversity of the plant's BAG gene family and suggest that AtBAG7 is an essential component of the UPR during heat and cold tolerance, thus confirming the cytoprotective role of plant BAGs

    Development of Glycine max Germplasm Highly Resistant to Sclerotinia sclerotiorum

    Get PDF
    Sclerotinia stem rot (SSR) of soybean caused by Sclerotinia sclerotiorum is a devastating disease of soybean, especially in the Upper Midwest region of the United States. To mitigate yield losses due to this disease, many control methods are available for producers, including cultural control practices, chemical control, and cultivars with quantitative resistance. However, due to there being few commercial cultivars with high levels of resistance, producers are often limited in their seed selection. The aim of this study was to develop novel conventional soybean cultivars with high levels of resistance to SSR, favorable agronomic traits, and resistance to additional economically important diseases. Initial crosses were conducted in 2016 with two different sources of SSR resistance. Across multiple generations of screening for resistance to SSR, three highly resistant soybean lines were identified as the elite lines. These elite lines were demonstrated to be highly resistant across multiple years in both greenhouse and field trials, including high levels of resistance to multiple diverse S. sclerotiorum isolates. The three selected elite lines also resulted in moderately high yields and favorable agronomic traits, such as low lodging and moderate branching, indicating their viability to be released for production. In addition to SSR resistance, these three elite lines demonstrated resistance to other economically important soybean diseases, such as frogeye leaf spot, anthracnose, Cercospora leaf blight, and brown stem rot. Overall, this work has led to three SSR-resistant soybean lines that could be useful for future breeding efforts or commercial soybean production.This article is published as Webster, Richard Wade, Megan McCaghey, Brian Mueller, Carol Groves, Febina Merlin Mathew, Asheesh Singh, Mehdi Kabbage, and Damon L. Smith. "Development of Glycine max Germplasm Highly Resistant to Sclerotinia sclerotiorum." PhytoFrontiers (2023). doi:10.1094/PHYTOFR-01-23-0009-R. Copyright Β© 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license
    • …
    corecore