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Preface

Acid is fundamental to the immune mechanisms of eukaryotes.

Therefore pathogens have evolved a myriad of strategies to evade,

suppress, or exploit biological acids to gain access to host

resources. Here, we describe several intracellular and extracellular

pathogens to illustrate our current understanding of how acid

plays central roles in animal and plant immunity, and also how it

can be produced and exploited by microbes for pathogenic

success.

The Importance of Acid

The pH of an aqueous solution constitutes one of its most

fundamental properties. Cells and organisms are largely aqueous

entities and have evolved sophisticated strategies for sensing,

exploiting, and modifying the pH of their surrounding environ-

ments for assorted biological processes, including nutrient

acquisition, intercellular communication, virulence, and defense

against invading pathogens. At the same time, abnormal

intracellular or extracellular pH values are found in several

human and plant diseases, including cancer [1] and tumorigenesis

in plants. The pH of the cytosol of most eukaryotic cells is slightly

alkaline, at 7.2–7.4 [2]. However, cells generate and exploit

biological acids for essential functions, including the denaturation

of proteins destined for degradation and the activation of acid

hydrolases that mediate this process [3], and as potent activators of

intracellular signaling events [4–7]. Here, we focus on how

biological acids are generated, exploited, and manipulated by

hosts and pathogens during infection and disease progression. Our

analysis features a comparative approach. We consider the

function and measurement of acid in several host-pathogen

systems. We provide examples of how acid is used in innate and

adaptive immunity, inside and outside of cells, by pathogens of

medical, agricultural, and economic importance, from bacterial

and fungal Kingdoms, parasitizing both plants and animals

(Figure 1). We conclude by comparing broad themes that bridge

or separate the mechanisms by which evolutionarily divergent

pathogens and hosts evade, subvert, or exploit biological acids.

Intracellular Acids and Their Measurement

The endocytic and phagocytic pathways of eukaryotic cells

contain acidic intracellular compartments that carry out diverse

functions, including nutrient acquisition [8,9], immunological

information processing [10], protein and membrane degradation

[3], apoptosis [11], cellular repair and autophagy [12], and host

defense [13]. Specialized functions for these pathways have often

been described. In plants, for example, endocytic physiology

influences gravitropism, guard cell movement, and plant hormone

transport (for review, see [14]). Low pH is a critical requirement in

several of these processes.

The pH of early endosomes, late endosomes, and lysosomes/

vacuoles are approximately 6, 5.5, and below 5, respectively,

although their pH varies with cell type, cultivation conditions, and

biological context [15]. These acidic compartments communicate

with one another through the vectoral exchange of membrane and

protein along evolutionarily conserved trafficking pathways

[10,16]. In the endocytic pathway, extracellular proteins that are

destined for internalization and degradation are captured by cell

surface receptors or fluid phase engulfment. The internalized

materials are sequentially trafficked from early to late endocytic

compartments for delivery to acidic terminal compartments, which

are designated lysosomes or terminal vesicles/vacuoles in animal

and plant systems, respectively. During this process, the acidity of

endocytic organelles increases. Newly synthesized proteins can also

be directly delivered to endocytic compartments from the trans-

Golgi network, or transported to the plasma membrane and then

subsequently endocytosed. The mannose-6-phosphate receptor

pathway mediates the former trafficking event [17]. Finally,

contents can be delivered to acidic organelles via the autophagy

pathway. In this process, membranes engulf cytoplasmic contents

and/or subcellular organelles for eventual maturation and delivery

to lysosomes/vacuoles, where these materials are degraded [18].

The autophagy pathway has been shown to be critical for diverse

biological processes in plants, animals, and fungi, including

survival during periods of nutrient limitation, (embryonic)

development, apoptosis, abiotic stress, and host defense [19].

Considerable research, using yeast, insect, worm, plant, and

mammalian model systems, has been performed to elucidate the
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mechanisms by which acidic pH is achieved within the organelles

of eukaryotic cells. The acidification of organelles in the endocytic

pathway has been shown to be mediated by the activity of

vacuolar-type ATPase (V-ATPase) enzymes [20]. These proteins

exploit ATP to drive protons into the lumen of endocytic

membranes [21,22]. In parallel with this movement of protons is

the pumping of cations out of the organelle, to dissipate the

development of a restrictive electrochemical gradient across the

vesicular membrane [23]. Mechanisms mediating the biogenesis of

acidic compartments have also been extensively investigated. In

fact, the biogenesis of lysosomes and vacuoles constitutes an

important subfield of cell biology [24], and several excellent

reviews on this subject have recently been published [14,25–27].

The task of measuring the pH of intracellular organelles

presents several challenges. First, the subcellular organelles of

eukaryotic cells are small (from 0.1 mm in fungi to 50 mm in plants)

and provide no direct access to the outside environment once

formed [28,29]. Therefore, biochemical analysis of the lumen of

these compartments requires their fractionation and isolation.

Moreover, intracellular organelles are highly dynamic entities that

change composition as they mature or travel along defined

membrane trafficking pathways. This fact poses challenges to the

analysis of heterogenous, often nonsynchronous populations of

subcellular compartments. Hence, light microscopy approaches

are favored for tracking organellar pH in living cells, and a variety

of tools have been developed for this purpose.

Early estimates of the pH of intracellular organelles of plants,

animals, and microbes were based upon the use of acidotropic

dyes [30–33]. These molecules traverse biological membranes and

accumulate in acidic intracellular organelles, thereby providing an

indirect, low cost, and qualitative estimate of organellar pH. More

recently, a variety of sophisticated technologies have been used to

estimate intracellular pH values, including the pH of endocytic

and other intracellular organelles. These technologies include pH-

responsive microelectrodes [34], NMR [35], and absorbance

spectroscopy [36]. However, fluorescence microscopy provides the

most compelling technology for analyzing (with high sensitivity

and resolution) the spatial and temporal dynamics of pH changes

inside living cells. For example, probes that emit fluorescence in a

manner that is dictated by their state of protonation can be used to

estimate organellar pH [37]. These reagents, which include

Oregon Green and engineered green fluorescent protein variants

[38], also support ratiometric measurements, which can then be

converted to absolute pH levels by comparison to calibration

Figure 1. Acid is found in pathogenesis and defense in diverse symbiotic relationships. Cellular schematic shows the use of acid in innate
and adaptive immunity of plant and animal cells (top). Subversion strategies of five model pathogens discussed in detail are shown in lower insets.
Acid is denoted by red or H+. PAMP, pathogen-associated molecular patterns; PRR, pattern recognition receptors; R, (plant) resistance genes; MHC,
major histocompatibility complex; SA, salicylic acid; JA, jasmonic acid; OA, oxalic acid.
doi:10.1371/journal.ppat.1003402.g001
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curves [39–41]. These ratiometric methods are also insensitive to

changes in fluorescence introduced by parameters other than pH,

including focal plane or photobleaching. Therefore, approaches

that exploit ratiometric indicators provide a more precise, specific,

and robust measure of organellar pH than their acidotropic

fluorophore counterparts, like LysoTracker [42]. Finally, fluores-

cent ratiometric analyses of intracellular pH can be extended to

investigate interactions between intracellular pathogens and host

cells by labeling live pathogens with pH-sensitive dyes (carboxy-

fluorescein, fluorescein, or Oregon Green) so that viability is not

compromised, infecting host cells with the labeled pathogens, and

then performing coincident analysis of pathogen intracellular

trafficking and vacuolar pH [43].

Acids in Immune Systems

Biological acids play central roles in both innate and adaptive

immune systems that dictate host-pathogen interactions. All living

things possess innate immune mechanisms, while vertebrates

benefit from the classically defined, lymphocyte-mediated adaptive

immunity as well.

Acid in Innate Immunity
In animal innate immunity, acid functions extracellularly and

intracellularly. Low pH plays an important role extracellularly in

controlling the microbial flora at mucosal sites, particularly in

tetrapod vertebrates. The gastric acid of the stomach limits the

range of prokaryotes that can continue down the alimentary canal

to join intestinal populations [44]. The vaginal microbiome

maintains an acidic environment that limits protozoan, fungal,

and bacterial infections [45]. Intracellularly, biological acids and

acid hydrolase enzymes mediate the killing of non–acid-adapted

organisms that are phagocytosed into progressively acidifying

vesicles epitomized by the lysosome. This process still provides

predatory feeding and phagotrophic nutrition for some protists

[46]. Pattern recognition receptors (PRR) such as the Toll-like

receptors (TLR) bind perceived threats by recognition of

pathogen-associated molecular patterns (PAMPs). In addition to

signaling the innate immune system, PRR recognition of PAMPs

in triploblastic animals can doom PAMP-bearing microbes to

phagosomal degradation in acidic vesicles [47]. Moreover, several

PRR such as TLR-3, TLR-7, and TLR-9 have evolved to sense

nucleic acid PAMP from acidic endosomes, rather than the cell

surface, taking advantage of the acidic degradation of virus and

virus-infected cells by the low-pH vesicle to sense pathogen-

indicative double-stranded RNA, single-stranded RNA, or DNA

with unmethylated CpG dinucleotides [48]. Thus, acid is used

both to selectively control microbial populations on animal

surfaces by filtering them based upon acid tolerance, and to

identify and eradicate those that are engulfed by patrolling

leukocytes.

Plants rely on the innate immune system for defense by sensing

pathogen-derived molecules for nonself recognition [49]. Plant

immune receptors are known as PRR that recognize PAMPs, such

as bacterial flagellin and fungal chitin as well as plant-derived

signals that arise from damage caused by pathogen challenge,

known as damage-associated molecular patterns (DAMPs). PAMP

and DAMP recognition is ancient and shared by plants and

animals. PRR binding activates broadly but moderately effective

PAMP-triggered immunity (PTI). Plant pathogens have evolved

mechanisms to breach this line of defense by acquisition of effector

molecules that are secreted into the plant cell and perturb host

immune responses by either avoiding detection or suppressing PTI

signal transduction. In the continuing arms race, plants have

developed a second tier of defense in which resistance gene

products (R proteins) [49] mediate recognition of specific pathogen

effectors and trigger effector-triggered immunity (ETI), which

generally culminates in host programmed cell death. R gene

products contain leucine-rich repeats (LRR) and nucleotide

binding sites and belong to the CATERPILLAR/NOD/NLR

family of proteins that mediate cytosolic PAMP surveillance in

animals as well [50], thus exhibiting trans-kingdom conservation.

Organic acids are crucial messengers of effector-triggered

immunity activated by R gene products of plants. These include

the hormone salicylic acid that mediates endogenous defense

signals and transmits systemic responses that orchestrate systemic

acquired resistance [51]. This response is thought to be one of an

antagonistic triumvirate of acid-regulated stress responses in

plants, including jasmonic acid for wound healing and insect

protection and abscisic acid for environmental stresses [52].

Ethylene signaling has somewhat redundant overlap with these

latter two. Acids are also used in the pathogenic counterattack, as

several necrotrophic (requiring dead tissue/cells for growth and

reproduction) plant pathogens produce oxalic acid to control host

cell death programs, as discussed in more detail below.

Acid in Adaptive Immunity
The adaptive immune system shared by jawed vertebrates is

mediated by lymphocytes and has hallmark characteristics of

specificity and memory. The adaptive system enables the

preemptive engineering of our lymphocyte repertoires through

immunization, one of the most powerful tools for global public

health in the face of infectious disease. Like the plant ETI, the

adaptive system is a second line of defense behind the innate

system. While slower in initial response in comparison to the

innate, the adaptive system is plastic in its mitotic expansion and

contraction capability, surgical in the fine molecular specificity of

its targeting, and diverse in its effector mechanisms tailored to

classes and locales of pathogen.

The vertebrate adaptive immune system works in conjunction

with the more ancient innate system. The adaptive system may

have originally evolved to manage the vast populations of

commensal (better termed mutualistic) bacteria at mucosal

surfaces where low pH was already in use [53]. When the

relationship between host animal and symbiont turns parasitic,

immune mechanisms are used to eliminate or contain the microbe

and limit pathology, akin to the ‘‘hypersensitive response’’ of

plants.

Most adaptive immune responses require activation of specific

helper T lymphocytes, and the low-pH phagolysosomal system is

important for this activation. Unlike B cells that recognize free

antigen, T cells recognize peptide antigen in the context of major

histocompatibility complex (MHC) molecules. Two different

classes of MHC molecules present peptide to two different classes

of T cells [54]. Helper T cells are restricted to being activated only

by MHC class II molecules on antigen-presenting cells (APC) that

present peptide antigen. Dendritic cells are the best APC, but

macrophages and B cells are also very competent in T cell

activation. This APC hurdle is a major checkpoint to initiating an

adaptive immune response (Figure 2). For example, macrophages

harboring wily intracellular stowaways typically need ‘‘help’’ via

cytokine and co-stimulatory signals from an activated helper T cell

to in turn become activated and execute effector functions. Helper

T cells can only be activated by presentation of peptide antigens

specific for their somatically recombined T cell receptor gene

products in the context of self-MHC class II molecules. This MHC

class II–presented antigen must arise from an APC that has itself

been activated by ligation of its innate PRR (such as TLR). The
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generation of the antigenic peptides presented by APCs is acid

dependent.

The low pH of compartments of the phagolysosomal pathway is

co-opted by the adaptive as well as the innate immune system for

defensive purposes. We suggest that the cellular physiology of this

pathway has evolved from functioning in recycling of cellular

debris and tissue remodeling in early eukaryotes [46], to

functioning primarily for nutritional purposes in heterotrophic

protozoa, on to the killing of pathogens in innate immunity [55],

and finally to elegant regulation of adaptive immunity via antigen

processing [56] (Figure 3). Jawed vertebrates use a sophisticated

antigen processing pathway to load MHC class II with peptide

antigen from the acidified phagolysosome. Newly synthesized class

II a and b chains assemble in the pH-neutral endoplasmic

reticulum [57] together with a glycoprotein called the invariant

chain [58,59]. An important role of the invariant chain is to keep

MHC class II from being loaded prematurely with peptide from

the endoplasmic reticulum or Golgi, retaining that place for

products of the acidified phagolysosomal system.

In the trans-Golgi, the MHC class II/invariant chain complex is

diverted from the secretory pathway to the endocytic pathway

(Figure 4). In the low pH of the MHC class II compartment,

cathepsin proteases are activated to further cleave the invariant

chain, leaving only CLIP (the class II–associated invariant chain

peptide) in the peptide binding cleft [60]. HLA-DM can then bind

class II and catalyze the release of CLIP, facilitating its exchange for

phagolysosomal antigenic peptides before MHC transport to the

cell surface. Pathogen blockade (e.g., by the human immunodefi-

ciency virus) of the progressive cleavage of the invariant chain

results in the accumulation of invariant chain intermediates,

constipation of the antigen presentation pathway, and immunoe-

vasive reduced surface expression of MHC class II [61].

Cathepsins, related to papain, are the crucial acid-activated

proteases that cleave the invariant chain and also degrade

lysosomal contents to peptides appropriate for antigen to be

loaded in MHC class II [62]. The cathepsins primarily involved in

antigen processing are L and S. Although invariant chain and

cathepsins of adaptive immunity likely evolved with the jawed

cartilaginous fishes (gnathostomes, see Figure 3) [63], comparative

phagosome proteomics show acid-active cathepsins to be an

original and fundamental component of the ancestral eukaryotic

phagolysosomal system [64].

Thus, the acidic phagolysosomal system prepares peptide

antigens for the initiation of most cellular adaptive immune

Figure 2. Acid’s role in initiating adaptive immunity. An antigen-presenting cell activated by innate PRR will present peptide antigen
generated in acidic vesicles to a helper T cell via MHC class II. Activated by this presentation of specific antigen, the helper T cell can then mediate
many different immune effector functions, depending on the subtype of helper CD4+ T cell, context, and signals from the APC. Five such major
immune effector pathways are suggested here.
doi:10.1371/journal.ppat.1003402.g002
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responses, mediated by the MHC class II system of presentation to

helper T cells.

Acids in Host-Pathogen Interactions

Given the role that acid plays in host defense and antigen

presentation in animal pathosystems, it is perhaps not surprising

that both plant and animal pathogens have evolved sophisticated

systems for adapting to, avoiding, or subverting the threats that

acidic environments and acid-mediated defense processes pose.

We illustrate this point using two intracellular bacterial patho-

gens—Coxiella burnetii and Brucella melitensis—which have evolved

disparate strategies for adapting to life in acidic environments and

avoiding killing by acidic organelles. Two extracellular mucosal

pathogens—Helicobacter pylori and Escherichia coli—exemplify tactics

used to colonize the extreme pH of the alimentary canal. In

addition, we describe the way in which the plant pathogens

Agrobacterium tumefaciens and Sclerotinia sclerotium exploit and produce

acidic environments, respectively, to promote their pathogenic

programs. These host-pathogen systems have been chosen both for

their position as major models in which acid defense mechanisms

have been elucidated as well as their importance in human,

animal, and plant pathology.

Intracellular Acid
Many organisms generate and use acidic environments to

thwart infection by pathogens. However, some pathogens have

evolved elegant strategies to defeat these acidic defense mecha-

nisms, including the ability to withstand or thrive in highly acidic

environments. The intracellular pathogen Coxiella burnetii provides

a compelling example of such an adaptation. The Gram-negative

bacterium C. burnetii is the causative agent of Q fever. Its natural

reservoir in the United States consists mainly of dairy cattle, sheep,

and goats [65], and its extreme infectivity (single bacterium [66])

led to its weaponization before the United States’ biological

warfare program was terminated in 1969 [67].

C. burnetii replicates within phagolysosome-like Coxiella-contain-

ing vacuoles (CCVs) and is dependent on the low pH of this

compartment to activate a developmental process that turns

metabolically quiescent small cell variants (SCV) into their

metabolically active, replicating large cell counterparts [68]

(Figure 5A). C. burnetii is taken up via complement receptor 3

and avb3 integrin-mediated mechanisms into macrophages [69].

Actin-dependent phagocytosis leads to trafficking through an early

endosome, progressing to late endosome and the phagolysosome-

like terminal CCV [70,71]. The trafficking appears slightly

delayed compared with latex bead uptake [72], and membrane

markers for Rab5, Rab7, Rab24, microtubule-associated protein-1

light chain alpha 3 (LC3), lysosomal-associated membrane

proteins (LAMP)-1, LAMP-2, and LAMP-3, and flotillin 1 and 2

progressively decorate the CCV [73–75]. Connection to the

autophagosome compartment appears essential to support the

biogenesis of a compartment that can support productive

replication of the pathogen [74,76]. In addition, CCV membrane

development to a spacious vacuole requires access to continual

host-derived cholesterol biosynthesis [77,78] and connection to a

canonical secretory pathway [79].

Several lines of investigation support the hypothesis that

maintenance of the acidic pH of the spacious vacuole is essential

for C. burnetii replication. First, studies using ratiometric, pH-

sensitive probes have demonstrated that C. burnetii replicates in

vacuoles that possess an acidic pH [80]. Inhibition of host vacuolar

Figure 3. Phylogeny of acidic phagolysosome use in immunity. Simplified phylogeny of life, marking major hypothesized steps supported by
current comparative biology in the co-opting of the acidic phagolysosome system in innate and adaptive immunity (blue). Sister taxon names are
illustrative and not necessarily of same phylogenetic rank, and genetic distances are not to scale. All life has innate immunity, but only vertebrates
have adaptive immunity (red). Origins of key proteins that regulate the system are shown in green.
doi:10.1371/journal.ppat.1003402.g003
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ATPase activities that maintain the acidic pH of late endocytic and

lysosomal compartments by treatment with bafilomycin signifi-

cantly impairs the intracellular replication of the pathogen.

Similarly, neutralization of vacuolar pH by treatment with the

chaotropic agent chloroquine inhibits intracellular replication

[81]. Taken together, these data indicate that the C. burnetii

replicative niche has an acidic pH, and raise many questions about

the mechanisms by which Coxiella and other acid-adapted

intracellular pathogens survive in the highly acidic environment

of the CCV terminal compartment [82,83].

Several strategies have been proposed to contribute to acid

tolerance of C. burnetii, and the development of axenic growth

conditions and suicide plasmid-based targeted gene deletion

methods is allowing identification of virulence mechanisms and

genes in this model [84]. First, the intracellular trafficking of the

pathogen along the endolysosomal pathway pauses immediately

after entry [72]. This pause in phagolysosomal maturation has

been hypothesized to play a critical role in acid adaptation by

providing the pathogen with sufficient time to prepare (through

the expression of acid tolerance factors) for the onslaught of acid

that follows. Second, stress-response and vacuole-detoxification

genes are dramatically upregulated when the pathogen invades

host cells, thereby supporting its adaptation to the harsh vacuolar

environment [85]. Finally, C. burnetii encodes an unusually high

number of basic proteins. The average pI value for all predicted

proteins in the genome of the Nine Mile reference strain is 8.25

[86,87]; 60% of the proteome is acidic [88]. Moreover,

approximately 45% of C. burnetii proteins were found to have a

pI value of $9, which is higher than the sequenced genomes of

other intracellular bacterial pathogens [89]. Orthologous products

of the RpoS genes of E. coli (pI 4.6) and C. burnetti (pH 9.6) serve as

striking examples of the extreme acid adaptation of a protein while

maintaining a conserved function. It is hypothesized that Coxiella’s

skew toward production of basic proteins provides a proton sink to

buffer those protons that enter the cytoplasm [88,90]. While the

low pH of the phagolysosome is a crucial parameter, Coxiella

Figure 4. Acid-active cathepsins cleave phagolysosomal antigens in the MHC class II pathway. Phagocytosed antigens are degraded to
peptides (grey) by acids and acid-active cathepsin proteases as the endosomal pH decreases due to fusion with lysosomes (1). During their trafficking
from the ER to the cell surface, MHC class II molecules (light green) pass through these acidified vesicles (2). Invariant chain (red) chaperones MHC
class II from the ER to an acidified endosome, all the while protecting the peptide binding groove of MHC class II from premature loading (3).
Invariant chain is cleaved by cathepsins but leaves the CLIP portion (red triangle) in the MHC peptide binding site (4). In a specialized late endosome,
the MHC homolog HLA-DM finally binds to the MHC class II/CLIP complex and releases CLIP (5), allowing other peptides to bind before the MHC class
II travels to the cell surface (6). There it can present antigen to T cells (7).
doi:10.1371/journal.ppat.1003402.g004

PLOS Pathogens | www.plospathogens.org 6 July 2013 | Volume 9 | Issue 7 | e1003402



tolerates cathepsin and other acid protease action while thriving in

this environment. Coxiella therefore illustrates how pathogens can

adapt to acidic compartments.

In an alternative strategy, intracellular bacterial pathogens can

address the threat that acidic intracellular compartments pose by

minimizing their interactions with them. The intracellular

Figure 5. Coxiella and Brucella use distinct mechanisms for intracellular pathogenesis. A. C. burnetti thrives in the acidic phagolysosome
system, requiring low pH for the transition from quiescent small cell variants (SCV) to metabolically active large cell variants (LCV). Several of the
transmembrane proteins that mark the Coxiella-containing vacuole (CCV) through this transition are shown. The Dot/Icm type IV secretion system is
used by C. burnetti to deliver proteins into the host cytosol [138], and renovate the lysosome into a CCV [139]. Cb, Coxiella burnetti; Atg, autophagosome;
Lys, lysosome. B. Working model of Brucella intracellular parasitism. Brucella-containing vacuoles avoid fusion with acidic lysosomes, and instead traffic
to a compartment that is decorated with ER markers for replication. The Type IV secretion system (T4SS) of the pathogen is critical for appropriate
trafficking, and mutants that harbor mutations in the T4SS traffic to the lysosome where they are killed. Several T4SS secretion substrates have been
identified, and it has been postulated that these molecules contribute to supporting the intracellular lifestyle of the pathogen. Replicative Brucella can
exit cells by trafficking along a pathway that involves selective interactions with components of the host cell autophagy biogenesis machinery.
Approximate vesicular/vacuolar pH is indicated by color, and the Golgi is generally more acidic than the ER [57,140–142].
doi:10.1371/journal.ppat.1003402.g005
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bacterial pathogen Brucella spp. provide excellent models to

analyze this strategy for addressing the threat that intracellular

acidic vacuoles pose to invading pathogens. Brucella spp. are

causative agents of brucellosis, a zoonosis of global importance

[91]. In humans, the disease causes severe, debilitating, and

protracted symptoms, and affects practically every organ system of

the body. Brucellosis often presents in the clinic as an undulant

fever [92]. However, chronic infections are frequently associated

with osteoarticular disease with neurological complications. The

reproductive system is also a common site of infection, and

infection during pregnancy may increase the risk of spontaneous

abortion. Consumption of unpasteurized milk products from

infected animals is the most common route to human infection

[92]. However, Brucella is highly infectious and can be readily

transmitted in aerosolized form [93]. Brucellosis has eluded

systematic attempts at eradication, even in most developed

countries, and no human vaccine is available [94]. These features

contribute to the classification of Brucella as a potential bioterror

agent, and to the interest the biosecurity and world health

communities have expressed in this organism.

During their intracellular trafficking within host cells, Brucella-

containing vacuoles (BCVs) interact but avoid fusion with the host

lysosome [95,96] (Figure 5B). Instead, replicative BCVs become

decorated with markers for ER [97]. Mutant strains harboring

defects in the Type IV secretion system do not avoid fusion with

acidic lysosomal compartments, and instead are rapidly killed after

fusion with this organelle [98]. In mouse models of brucellosis, the

organism persists for months in the lymph nodes and spleen [99].

However, colonization by even the most virulent strains becomes

undetectable with time [100]. The persistence of this organism in

the ER of host APCs may be crucial for chronic infection. Thus,

avoiding the harsh environment of the host cell’s acidic

degradative organelles is critical to the survival and replication

of this intracellular bacterial pathogen.

Extracellular Acid in Animals
Several notable microbial pathogens, including those that infect

the gastrointestinal or urogenital tracts of humans and animals,

exploit or create extracellular acidic environments to promote

their pathogenic programs. For example, pathogenic E. coli (strain

0157:H7), Vibrio cholerae, Vibrio vulnifus, Shigella flexneri, and

Salmonella typhimurium are found in neutral pH environments (on

food products or in water). However, after ingestion by their

mammalian hosts, these pathogens encounter the severe acidic

environment of the stomach (pH = 2 or lower) or urogenital

systems, which normally constitute important barriers to infection

by non–acid-adapted organisms. These parasites, however, have

evolved sophisticated and divergent strategies to tolerate these

harsh acidic environments.

A significant human pathogen that provides an understanding

of an alternative strategy by which an extracellular acidic niche

can be occupied is Helicobacter pylori, the agent whose colonization

is associated with chronic gastrointestinal diseases ranging from

dyspepsia to gastric and duodenal ulcers to gastric carcinoma

[101,102]. This organism chronically infects the stomach,

surviving the very low pH of the lumen, burrowing into the

mucus with flagella to attach to and occasionally invade epithelial

cells. Survival in this environment is dependent on expression of

copious amounts of urease, converting urea into buffering

ammonia plus carbon dioxide [102]. In this strategy, H. pylori

maintains a periplasmic pH at ,6.1, while the extracellular

environment can be as low as 2.0. The reaction products of urease

apoenzyme (ureA and ureB) are driven specifically to the

periplasmic compartment by a protein (UreI) encoded in a gene

cluster with urease. UreI is a pH-gated inner membrane urea

channel allowing for efficient transit to the cytoplasm of substrate

(urea) and periplasmic release of reactant NH3, which is rapidly

converted to NH4 by membrane-bound a-carbonic anhydrase.

The transcriptional expression control, post-transcriptional re-

cruitment, and enzymatic activity of H. pylori urease is optimized to

function in a microenvironment of pH 3.5–,6.0 [103].

H. pylori is specialized for the extreme pH of the stomach, but

enteric species survive passage through the stomach for coloniza-

tion of the lower gut. Many E. coli efficiently colonize the intestine,

and provide a complementary window for understanding how

pathogens address the challenge of acidic environments. The acid

stress response systems of Gram-negative enteric pathogens are

both enzyme and chaperone based, and include resistance

pathways that exploit glutamate-, arginine-, and lysine-decarbox-

ylase enzymes [104]. E. coli contains five acid resistance pathways

(AR1–5), which work in concert to resist the highly acidic

environment that the pathogen encounters in the gut [105]. In the

AR2 system of E. coli, for example, the pyridoxal 59 phosphate

(PLP)-dependent GadA and GadB decarboxylases convert gluta-

mate to gamma-amino butyric acid (GABA) and carbon dioxide

(CO2) in a reaction that consumes a cytoplasmic proton [106].

The inner membrane antiporter GadC then transports GABA out

of the cell in exchange for additional glutamate [106]. Thus, the

pathogen mitigates acid stress by promoting the net export of

protons outside of the cell at the expense of intracellular glutamate.

Analogous systems that exploit arginine and lysine also contribute

to maintaining the pH homeostasis of the cytoplasm.

Thus gut pathogens use a variety of active biochemical systems

to maintain periplasmic and cytoplasmic pH at tolerable levels

amidst the low luminal pH of the gastrointestinal tract.

Extracellular Acid in Plants
Analysis of interactions between plant pathogens and their host

plants provides additional insights into the role of acid in host-

pathogen interactions that cannot be fully appreciated by the

exclusive analysis of animal systems. The bacterial pathogens

Agrobacterium tumefaciens and Erwinia amylovora, the causative agents

of crown gall disease in diverse dicotyledenous plants and fire

blight in apples, pears, and Rosaceous crops, respectively, induce

disparate and nonoverlapping disease symptoms in plants.

Nevertheless, these pathogens respond to environmental acids by

modulating their virulence programs, and thus provide ideal

illustrations of an important mechanism by which pathogens of

both plants and animals respond to acidic extracellular environ-

ments in the context of the host-pathogen interaction.

In the Agrobacterium system, environmental acids drive the

induction of the pathogen’s virulence program. Specifically, the

acidic environment created by wounded plant tissues, as well as

plant-derived phenolic compounds present there, activate the

expression of bacterial virulence genes (vir regulon) on the tumor-

inducing (Ti) plasmid [107]. This activity, in turn, drives the

assembly and transfer of the Agrobacterium-derived T-DNA from the

bacterial pathogen to host cells. The T-DNA integrates into the

host plant genome, triggering factors that mediate the generation

of a tumor (gall) in plants. Interestingly, the acidic conditions that

initiate the T-DNA virulence program of Agrobacterium elicit two

additional and distinct responses in the pathogen—a conserved

response associated with the adaptation of the pathogen to

environmental acidification, and the intricate response that

regulates the establishment of a stable, long-term plant-pathogen

interaction [108]. Genes induced by the former response, such as

the motility gene flaA and the heat-shock protein ibpA, are highly

conserved and play corresponding roles in acid adaptation in other
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microbial systems, including in the bacterial pathogens of animals

(e.g., E. coli, Salmonella spp.) [108]. An important component of the

latter response is regulated by the activities of acidic plant

hormone signaling molecules, including salicylic acid (SA), indole-

3-acetic acid (IAA), and gamma-amino butyric acid (GABA) [109]

(more on plant hormones in the following section). These plant

acids generally signal through biochemically distinct and indepen-

dent bacterial pathways to function additively to shut off the

Agrobacterium virulence program and activate the quorum-quench-

ing machinery, which promotes the establishment of a stable host-

pathogen interaction. However, signal input from one pathway

(an environmental stress response signaled through abscisic

acid during a drought, for example) can inhibit the activation

of another (such as a jasmonic acid signal for wound repair

stimulated by herbivory). The activation of quorum-sensing

machinery as part of the process of establishing a stable host-

pathogen interaction represents a conserved theme in the

virulence programs of many bacterial pathogens [110].

Extracellular acidic environments can also influence the

virulence of fungal pathogens of plants, including Ustilago maydis

[111], Fusarium oxysporum [112], and Sclerotinia sclerotiorum [113], the

causative agents of tumorigenic corn smut, Fusarium wilt, and white

mold diseases of all broadleaf plants, respectively.

Plant Hormones
Analogous to animal hormones, plant hormones play key roles

in the control of development, growth, reproduction, and, of

relevance for this discussion, the regulation of immune responses

to microbial pathogens. Of the principal plant hormones, five are

acids, including: salicylic acid (SA), jasmonic acid (JA), abscisic

acid (ABA), indole acetic acid (IAA), and gibberellic acid (GA)

[114]. SA and JA and their derivatives are structurally and

functionally akin to aspirin and prostaglandins, respectively. SA

and JA are recognized as major defense hormones with the

classical view that SA is effective against biotrophic pathogens and

JA against necrotrophs, although there are exceptions [52].

Moreover, crosstalk occurs between these hormones that is often

antagonistic; elevated biotroph resistance (SA) results in elevated

necrotroph susceptibility and vice versa.

Systemic acquired resistance (SAR) is induced in the plant by SA

following pathogen challenge. When established, SAR affords

long-lasting and broad-spectrum resistance including uninfected

tissue. SA levels increase following initial pathogen attack and are

strongly correlated with establishment of SAR [115]. This

observation is strengthened by the fact that plant treatment with

exogenous SA or biologically active chemical analogs leads to SAR.

Moreover, blocking SA synthesis inhibits SAR [116]. Considerable

effort has been undertaken to identify the regulatory pathways

mediating SAR. Of note, mutants of the npr1 locus were found to

prevent SA signaling [117]. In the uninduced state, cytosolic NPR1

is present as an oligomer via intermolecular disulfide bridges.

Following SA-mediated SAR induction, alterations in cellular

redox result in a reduced state leading to disassociation of the

complex and release of monomeric species. Monomeric NPR1

translocates to the nucleus, interacts with the leucine zipper

transcription factor TGA1 that binds to promoters of SA-

responsive genes, and activates defense gene expression [118].

The jasmonate family comprises lipid-derived metabolites

synthesized via the oxylipin pathway [119]. Upon synthesis, JA

can be metabolized to methyl jasmonate or conjugated to amino

acids [120]. Most JA responses are mediated by the F-box protein

coronatine insentive 1 (COI1). Coi1 mutants are more resistant to

bacterial pathogens and show elevated SA levels [121]. In

accordance with SA-JA antagonism, coi1 plants are more

susceptible to several, but not all, necrotrophic fungi. Exogenous

application of JA induces broad changes in transcription

patterns—in particular, of genes regulated by MYC2, a basic

helix loop helix transcription factor [122]. Genetic studies revealed

a family of 12 jasmonate ZIM-domain–containing (JAZ) proteins

that repress JA signaling. JAZ proteins can homo- and hetero-

dimerize in vitro, suggesting a possible mechanism for fine-tuning

signaling responses [123]. Binding of conjugated JA or coronatine

to SCFCOI1 promotes ubiquitination of JAZs leading to protea-

some degradation, relieving repression of MYC2, and facilitating

activation of JA-responsive genes [124]. Alternative splicing of the

c-terminal JAS domain of JAZ proteins results in reduced

ubiquitination and thus reduced degradation.

Although JA is central to modulating defense against necro-

trophic pathogens, it is increasingly important in other aspects of

plant-pathogen interactions including SAR [125]. Once the JA

pathway is activated (e.g., after wounding), a similar JA response

can be triggered in distal undamaged parts of the plant. The

antagonism between SA and JA signaling pathways in plants show

a dramatic resemblance to the effect of the anti-inflammatory drug

aspirin, which is an acetylated form of SA, on prostaglandins.

Prostaglandins are structurally related to JA, and these hormones

function at sites of infection or injury. SA/JA crosstalk shows

similarities with the inhibitory effect of aspirin to prostaglandins in

mammalian cells; however, the molecular bases of these interac-

tions are not identical [126].

The phytopathogenic fungus Sclerotinia sclerotiorum provides an

informative model to illustrate acid-dependent pathogenic devel-

opment. This fungus produces copious amounts of the dicarbox-

ylic acid oxalic acid (OA) as part of its virulence arsenal, but also

uses OA to reprogram host signaling and modulate programmed

cell death to coordinate effective pathogenesis [113].

Sclerotinia is an economically important necrotrophic fungal

pathogen of plants with an extremely broad host range (all

broadleaf dicot plants). The primary component for pathogenic

success is the production and secretion of oxalic acid by the fungus

[127]. Oxalic acid is found in plants, animals, and humans and is

the endpoint of several metabolic processes such as the breakdown

of glyoxylic acid or ascorbic acid [128,129]. In mammals, oxalic

acid plays an important role in kidney stone formation as a counter

ion of calcium-forming oxalate crystals [130].

In fungi, this ‘‘simple’’ organic acid is remarkably multifunc-

tional and contributes to numerous physiological and pathogenic

processes [131] (Figure 6). Oxalate-deficient mutants of S.

sclerotiorum are nonpathogenic on all host plants tested and are

also unable to develop sclerotia—highly melanized, durable

overwintering structures. Oxalate secretion might enhance Scler-

otinia virulence in several ways. Many fungal enzymes secreted

during invasion of plant tissues (e.g., pectinases) have maximal

activities at acidic pH and have been shown to be activated by

OA. A Sclerotinia MAP kinase has also been identified and

characterized [132], and has been shown to be required for

sclerotia formation in S. sclerotiorum. Gene expression of this Erk-

like MAPK (SMK1) is triggered by acidic pH mediated by OA; if

acidification does not occur, pathogenic development is blocked

[133,134].

OA has several other deleterious effects upon the plant. It can

degrade or weaken the plant cell wall via acidity and/or chelation

of cell wall Ca2+. Oxalic acid crystals are sequestered in vacuoles,

and when decompartmentalized during infection, these crystals

can plug the vascular system. Oxalic acid in and of itself is directly

toxic, functioning as a non–host-specific phytotoxin. While these

features are correlated with fungal disease development, they do

not account for wild-type pathogenesis [135].
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OA can function as an elicitor of apoptotic-like plant

programmed cell death, involving the modulation of the host

redox environment [136]. The induction of apoptosis and disease

requires generation of reactive oxygen species (ROS) in the host, a

process triggered by fungal-secreted OA. Curiously, the pro-

grammed cell death process mediated by OA is independent of

acidification; a direct correlation between DNA laddering, ROS

induction, and cell death were all observed at neutral pH. When

acidification via OA occurs, cells also die but in a mechanistically

different way: necrotically without hallmarks of apoptosis such as

plasma membrane blebbing and chromosomal DNA fragmenta-

tion. The specificity of this interaction is further supported by the

observation that DNA fragmentation is specific to OA, as other

acids such as citric acid, succinic acid, and hydrochloric acid do

not induce DNA ladders [137]. DNA cleavage also was

independent of oxalate formulation because OA, potassium

oxalate, and sodium oxalate all caused DNA laddering, thus

suggesting that programmed cell death induction is not due to the

acidic nature of oxalate but rather to a property of OA itself.

Conversely, during the initial stages of infection, OA also

dampens the plant oxidative burst—an early host response

generally associated with plant defense. Experiments using a

transgenic redox-regulated GFP reporter show that, initially,

Sclerotinia (via OA) generates a reducing environment in host cells

that suppresses host defense responses including the oxidative

burst. Once infection is established, however, this necrotroph

induces the generation of plant ROS leading to PCD of host tissue,

the result of which is of direct and sole benefit to the pathogen. In

contrast, a nonpathogenic, OA-deficient mutant failed to alter host

redox status and induced autophagy and restricted growth. These

results indicate active recognition of the mutant by the plant and

further point to the importance of cell death control in mediating

host-pathogen interactions.

Taken together, these data suggest that Sclerotinia establishes

reductive conditions that dampen the host oxidative burst and

suppress defense responses [135]. This scenario buys precious

time, allowing for unimpeded fungal growth and establishment.

When the plant eventually senses the presence of nonself, it is too

late; the fungus is already inducing the programmed cell death of

host cells.

Conclusions and Perspective

Just as pH is a fundamental property of living systems, acid is

employed by both host and pathogen in their ever-escalating arms

race. On the side of the host, acid is used in a variety of

mechanisms, including extracellular innate immunity at mucosal

surfaces and extreme pH in the case of the mammalian stomach.

Figure 6. Stages of Sclerotinia pathogenesis. Early steps of infection create a reducing environment that dampens host defense responses and
inhibits reactive oxygen species (ROS). This allows the fungal pathogen to establish and damage host tissues with cell wall degradative enzymes
(CWDE). When eventual apoptotic cascades are induced, recognition occurs but too late for the host plant to prevail. (adapted from [143]).
doi:10.1371/journal.ppat.1003402.g006
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Yet some pathogens have evolved mechanisms to defeat the

natural defense that the acidic environment provides, exemplified

by Helicobacter’s urease system that keeps its periplasm close to

neutral and E. coli’s glutamate decarboxylase pathway that

removes cytoplasmic protons as a component of its acid response.

Acid is important in plant extracellular immunity as well and is a

characteristic of wounding, but Agrobacterium senses this drop in pH

and counters with acid-based signaling programs to ramp up and

attenuate virulence effectors. Fungi such as Sclerotinia use OA to

subvert host defense and co-opt host signaling pathways, triggering

cell death via apoptosis of host cells. Thus fungal (OA) induced

metabolic reprogramming of the host results in apoptosis,

providing nutrients exclusively for the benefit of the necrotrophic

organism.

The adaptive immune system of vertebrates pirated the acidic

phagolysosomal system for not only pathogen killing but also for

antigen presentation to T cells. Vesicular acid and acid-activated

proteases such as cathepsins are critical to antigen processing for

MHC loading. But some microbes have evolved mechanisms to

cope with the low pH of vacuoles, such as Coxiella, while others

have managed to reprogram the vesicle trafficking to mitigate

interactions with harmful acidic organelles (e.g., lysosomes), as

does Brucella. Ratiometric dyes have been crucial in facilitating the

analysis of these intracellular organelles and the pathogenesis that

occurs there. Table 1 lists additional pathogens that exploit or

evade acid beyond the scope of this review.

From the perspective of natural history, we see the mechanisms

by which organisms exploit or subvert biological acids as central to

their evolutionary success. Thus acid is one of a small, select

number of fundamental biological arenas in which organic life has

long fought. For example, membranes create a defined space for

orderly biochemistry where metabolism and other necessities can

occur protected from the chaos beyond the phospholipid bilayer.

Naturally, immune systems evolve enzymes such as lysozyme,

perforin, and the membrane attack complex of the complement

cascade to disrupt the membranes, but pathogenic microbes

evolve complex cell walls and capsules to protect and then

elaborate secretion systems to breach these barriers. These are but

a few of the many mechanisms and counter-mechanisms that

operate at the theater of war that is the plasma membrane.

Similarly, genomic integrity is also an important battleground;

therefore, the simplest of organisms have elegant DNA repair

systems, high-fidelity replication enzymes, and restriction endo-

nucleases. Yet viruses still integrate, and even counter by

exploiting the rapid evolution afforded by replication errors. In

turn, the adaptive immune system employs somatic hypermutation

of antibody genes in a Darwinian germinal center reaction to hone

high-affinity receptors against ever-shifting pathogen antigens.

Just as the plasma membrane and the genome are core

components of life to be protected, exploited, and used in defense

and offense, so is the pH of spaces large (stomach) and small

(phagolysosome). It should come as no surprise that acids are used

to great effect in signaling, killing, protecting, hiding, sampling,

and evading by both host and microbe, and we should look to the

trenches of protons and hydroxides for continued exploitation by

both immune and pathogen systems.
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