15 research outputs found

    Infrared study on the thermal evolution of solid state formamide

    Get PDF
    Laboratory experiments have shown that the energetic processing, i.e. ion bombardment and UV photolysis, of interstellar grain mantles and cometary surfaces is efficient in the production of formamide. To explain its presence in the gas-phase in these astrophysical environments, a desorption mechanism has to be taken into account. In this work we show experimental results on the thermal evolution of formamide when deposited at 17 K as pure and in mixture with water or carbon monoxide. In these samples, we observed formamide desorption at 220 K. Moreover, we discuss its synthesis in a mixture containing molecular nitrogen, methane and water (N2:CH4:H2O) deposited at 17 K and bombarded with 200 keV H+. Heating the sample, we observed that the newly formed formamide remains trapped in the refractory residue produced after the ion bombardment up to 296 K. To analyse the samples we used Fourier transform-infrared spectroscopy (FT-IR) that allowed us to study the infrared spectra between the deposition and the complete desorption of formamide. Here we discuss the experimental results in view of their astrophysical relevance

    Proton and electron irradiations of CH4:H2O mixed ices

    Get PDF
    The organic chemistry occurring in interstellar environments may lead to the production of complex molecules that are relevant to the emergence of life. Therefore, in order to understand the origins of life itself, it is necessary to probe the chemistry of carbon-bearing molecules under conditions that simulate interstellar space. Several of these regions, such as dense molecular cores, are exposed to ionizing radiation in the form of galactic cosmic rays, which may act as an important driver of molecular destruction and synthesis. In this paper, we report the results of a comparative and systematic study of the irradiation of CH4:H2O ice mixtures by 1 MeV protons and 2 keV electrons at 20 K.We demonstrate that our irradiations result in the formation of a number of new products, including both simple and complex daughter molecules such as C2H6, C3H8, C2H2, CH3OH, CO, CO2, and probably also H2CO. A comparison of the different irradiation regimes has also revealed that proton irradiation resulted in a greater abundance of radiolytic daughter molecules compared to electron irradiation, despite a lower radiation dose having been administered. These results are important in the context of the radiation astrochemistry occurring within the molecular cores of dense interstellar clouds, as well as on outer Solar System objects.Comment: Published as an open access article in the MDPI journal Atom

    Ozone Production in Electron Irradiated CO2:O2 Ices

    Get PDF
    The detection of ozone (O3) in the surface ices of Ganymede, Jupiter's largest moon, and of the Saturnian moons Rhea and Dione, has motivated several studies on the route of formation of this species. Previous studies have successfully quantified trends in the production of O3 as a result of the irradiation of pure molecular ices using ultraviolet photons and charged particles (i.e., ions and electrons), such as the abundances of O3 formed after irradiation at different temperatures or using different charged particles. In this study, we extend such results by quantifying the abundance of O3 as a result of the 1 keV electron irradiation of a series of 14 stoichiometrically distinct CO2:O2 astrophysical ice analogues at 20 K. By using mid-infrared spectroscopy as our primary analytical tool, we have also been able to perform a spectral analysis of the asymmetric stretching mode of solid O3 and the variation in its observed shape and profile among the investigated ice mixtures. Our results are important in the context of better understanding the surface composition and chemistry of icy outer Solar System objects, and may thus be of use to future interplanetary space missions such as the ESA Jupiter Icy Moons Explorer and the NASA Europa Clipper missions, as well as the recently launched NASA James Webb Space Telescope

    Laboratory Experiments on the Radiation Astrochemistry of Water Ice Phases

    Get PDF
    Water (H2O) ice is ubiquitous component of the universe, having been detected in a variety of interstellar and Solar System environments where radiation plays an important role in its physico-chemical transformations. Although the radiation chemistry of H2O astrophysical ice analogues has been well studied, direct and systematic comparisons of different solid phases are scarce and are typically limited to just two phases. In this article, we describe the results of an in-depth study of the 2 keV electron irradiation of amorphous solid water (ASW), restrained amorphous ice (RAI) and the cubic (Ic) and hexagonal (Ih) crystalline phases at 20 K so as to further uncover any potential dependence of the radiation physics and chemistry on the solid phase of the ice. Mid-infrared spectroscopic analysis of the four investigated H2O ice phases revealed that electron irradiation of the RAI, Ic, and Ih phases resulted in their amorphization (with the latter undergoing the process more slowly) while ASW underwent compaction. The abundance of hydrogen peroxide (H2O2) produced as a result of the irradiation was also found to vary between phases, with yields being highest in irradiated ASW. This observation is the cumulative result of several factors including the increased porosity and quantity of lattice defects in ASW, as well as its less extensive hydrogen-bonding network. Our results have astrophysical implications, particularly with regards to H2O-rich icy interstellar and Solar System bodies exposed to both radiation fields and temperature gradients

    Energetic Electron Irradiations of Amorphous and Crystalline Sulphur-Bearing Astrochemical Ices

    Get PDF
    Laboratory experiments have confirmed that the radiolytic decay rate of astrochemical ice analogues is dependent upon the solid phase of the target ice, with some crystalline molecular ices being more radio-resistant than their amorphous counterparts. The degree of radio-resistance exhibited by crystalline ice phases is dependent upon the nature, strength, and extent of the intermolecular interactions that characterise their solid structure. For example, it has been shown that crystalline CH3OH decays at a significantly slower rate when irradiated by 2 keV electrons at 20 K than does the amorphous phase due to the stabilising effect imparted by the presence of an extensive array of strong hydrogen bonds. These results have important consequences for the astrochemistry of interstellar ices and outer Solar System bodies, as they imply that the chemical products arising from the irradiation of amorphous ices (which may include prebiotic molecules relevant to biology) should be more abundant than those arising from similar irradiations of crystalline phases. In this present study, we have extended our work on this subject by performing comparative energetic electron irradiations of the amorphous and crystalline phases of the sulphur-bearing molecules H2S and SO2 at 20 K. We have found evidence for phase-dependent chemistry in both these species, with the radiation-induced exponential decay of amorphous H2S being more rapid than that of the crystalline phase, similar to the effect that has been previously observed for CH3OH. For SO2, two fluence regimes are apparent: a low-fluence regime in which the crystalline ice exhibits a rapid exponential decay while the amorphous ice possibly resists decay, and a high-fluence regime in which both phases undergo slow exponential-like decays. We have discussed our results in the contexts of interstellar and Solar System ice astrochemistry and the formation of sulphur allotropes and residues in these settings

    Sulfur Ion Implantations Into Condensed CO2: Implications for Europa

    Get PDF
    The ubiquity of sulfur ions within the Jovian magnetosphere has led to suggestions that the implantation of these ions into the surface of Europa may lead to the formation of SO2. However, previous studies on the implantation of sulfur ions into H2O ice (the dominant species on the Europan surface) have failed to detect SO2 formation. Other studies concerned with similar implantations into CO2 ice, which is also known to exist on Europa, have offered seemingly conflicting results. In this letter, we describe the results of a study on the implantation of 290 keV S+ ions into condensed CO2 at 20 and 70 K. Our results demonstrate that SO2 is observed after implantation at 20 K, but not at the Europa-relevant temperature of 70 K. We conclude that this process is likely not a reasonable mechanism for SO2 formation on Europa, and that other mechanisms should be explored instead

    A systematic mid-infrared spectroscopic study of thermally processed SO2 ices

    Get PDF
    The use of mid-infrared spectroscopy to characterise the chemistry of icy interstellar and Solar System environments will be exploited in the near future to better understand the chemical processes and molecular inventories in various astronomical environments. This is, in part, due to observational work made possible by the recently launched James Webb Space Telescope as well as forthcoming missions to the outer Solar System that will observe in the mid-infrared spectroscopic region (e.g., the Jupiter Icy Moons Explorer and the Europa Clipper missions). However, such spectroscopic characterisations are crucially reliant upon the generation of laboratory data for comparative purposes. In this paper, we present an extensive mid-infrared characterisation of SO2 ice condensed at several cryogenic temperatures between 20 and 100 K and thermally annealed to sublimation in an ultrahigh-vacuum system. Our results are anticipated to be useful in confirming the detection (and possibly thermal history) of SO2 on various Solar System bodies, such as Ceres and the icy Galilean moons of Jupiter, as well as in interstellar icy grain mantles

    Education, Training and Scholarship

    No full text

    Effectiveness of pneumococcal vaccine against community-acquired pneumonia in elderly: feasibility study

    Get PDF
    Primary objective: To evaluate the feasibility of conducting a study of vaccine effectiveness (VE) against community acquired pneumonia (CAP) caused by PCV13 serotypes attended in primary health care setting using an indirect cohort design. Secondary objective: To estimate the proportion of all community acquired pneumonia attended in Portuguese primary health care caused by Streptococcus pneumoniae and by PCV13 serotypes.IMOVE+N/
    corecore