209 research outputs found

    Visualization of Myelin Basic Protein (Mbp) T Cell Epitopes in Multiple Sclerosis Lesions Using a Monoclonal Antibody Specific for the Human Histocompatibility Leukocyte Antigen (Hla)-Dr2–Mbp 85–99 Complex

    Get PDF
    Susceptibility to multiple sclerosis (MS) is associated with the human histocompatibility leukocyte antigen (HLA)-DR2 haplotype, suggesting that major histocompatibility complex class II–restricted presentation of central nervous system–derived antigens is important in the disease process. Antibodies specific for defined HLA-DR2–peptide complexes may therefore be valuable tools for studying antigen presentation in MS. We have used phage display technology to select HLA-DR2–peptide-specific antibodies from HLA-DR2–transgenic mice immunized with HLA-DR2 molecules complexed with an immunodominant myelin basic protein (MBP) peptide (residues 85–99). Detailed characterization of one clone (MK16) demonstrated that both DR2 and the MBP peptide were required for recognition. Furthermore, MK16 labeled intra- and extracellular HLA-DR2–MBP peptide complexes when antigen-presenting cells (APCs) were pulsed with recombinant MBP. In addition, MK16 inhibited interleukin 2 secretion by two transfectants that expressed human MBP–specific T cell receptors. Analysis of the structural requirement for MK16 binding demonstrated that the two major HLA-DR2 anchor residues of MBP 85–99 and the COOH-terminal part of the peptide, in particular residues Val-96, Pro-98, and Arg-99, were important for binding. Based on these results, the antibody was used to determine if the HLA-DR2–MBP peptide complex is presented in MS lesions. The antibody stained APCs in MS lesions, in particular microglia/macrophages but also in some cases hypertrophic astrocytes. Staining of APCs was only observed in MS cases with the HLA-DR2 haplotype but not in cases that carried other haplotypes. These results demonstrate that HLA-DR2 molecules in MS lesions present a myelin-derived self-peptide and suggest that microglia/macrophages rather than astrocytes are the predominant APCs in these lesions

    Tracing Functional Antigen-Specific CCR6+ Th17 Cells after Vaccination

    Get PDF
    BACKGROUND: The function of T helper cell subsets in vivo depends on their location, and one hallmark of T cell differentiation is the sequential regulation of migration-inducing chemokine receptor expression. CC-chemokine receptor 6 (CCR6) is a trait of tissue-homing effector T cells and has recently been described as a receptor on T helper type 17 (Th17) cells. Th17 cells are associated with autoimmunity and the defence against certain infections. Although, the polarization of Th cells into Th17 cells has been studied extensively in vitro, the development of those cells during the physiological immune response is still elusive. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the development and functionality of Th17 cells in immune-competent mice during an ongoing immune response. In naïve and vaccinated animals CCR6(+) Th cells produce IL-17. The robust homeostatic proliferation and the presence of activation markers on CCR6(+) Th cells indicate their activated status. Vaccination induces antigen-specific CCR6(+) Th17 cells that respond to in vitro re-stimulation with cytokine production and proliferation. Furthermore, depletion of CCR6(+) Th cells from donor leukocytes prevents recipients from severe disease in experimental autoimmune encephalomyelitis, a model for multiple sclerosis in mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, we defined CCR6 as a specific marker for functional antigen-specific Th17 cells during the immune response. Since IL-17 production reaches the highest levels during the immediate early phase of the immune response and the activation of Th17 cells precedes the Th1 cell differentiation we tent to speculate that this particular Th cell subset may represent a first line effector Th cell subpopulation. Interference with the activation of this Th cell subtype provides an interesting strategy to prevent autoimmunity as well as to establish protective immunity against infections

    Identification of the Rheumatoid Arthritis Shared Epitope Binding Site on Calreticulin

    Get PDF
    Background: The rheumatoid arthritis (RA) shared epitope (SE), a major risk factor for severe disease, is a five amino acid motif in the third allelic hypervariable region of the HLA-DRb chain. The molecular mechanisms by which the SE affects susceptibility to – and severity of- RA are unknown. We have recently demonstrated that the SE acts as a ligand that interacts with cell surface calreticulin (CRT) and activates innate immune signaling. In order to better understand the molecular basis of SE-RA association, here we have undertaken to map the SE binding site on CRT. Principal Findings: Surface plasmon resonance (SPR) experiments with domain deletion mutants suggested that the SE binding site is located in the P-domain of CRT. The role of this domain as a SE-binding region was further confirmed by a sulfosuccinimidyl-2-[6-(biotinamido)-2-(p-azido-benzamido) hexanoamido] ethyl-1,3-dithiopropionate (sulfo-SBED) photoactive cross-linking method. In silico analysis of docking interactions between a conformationally intact SE ligand and the CRT P-domain predicted the region within amino acid residues 217–224 as a potential SE binding site. Site-directed mutagenesis demonstrated involvement of residues Glu 217 and Glu 223- and to a lesser extent residue Asp 220- in cell-free SPR-based binding and signal transduction assays. Significance: We have characterized here the molecular basis of a novel ligand-receptor interaction between the SE and CRT. The interaction represents a structurally and functionally well-defined example of cross talk between the adaptive an

    Amino Acid Similarity Accounts for T Cell Cross-Reactivity and for “Holes” in the T Cell Repertoire

    Get PDF
    Background: Cytotoxic T cell (CTL) cross-reactivity is believed to play a pivotal role in generating immune responses but the extent and mechanisms of CTL cross-reactivity remain largely unknown. Several studies suggest that CTL clones can recognize highly diverse peptides, some sharing no obvious sequence identity. The emerging realization in the field is that T cell receptors (TcR) recognize multiple distinct ligands. Principal Findings: First, we analyzed peptide scans of the HIV epitope SLFNTVATL (SFL9) and found that TCR specificity is position dependent and that biochemically similar amino acid substitutions do not drastically affect recognition. Inspired by this, we developed a general model of TCR peptide recognition using amino acid similarity matrices and found that such a model was able to predict the cross-reactivity of a diverse set of CTL epitopes. With this model, we were able to demonstrate that seemingly distinct T cell epitopes, i.e., ones with low sequence identity, are in fact more biochemically similar than expected. Additionally, an analysis of HIV immunogenicity data with our model showed that CTLs have the tendency to respond mostly to peptides that do not resemble self-antigens. Conclusions: T cell cross-reactivity can thus, to an extent greater than earlier appreciated, be explained by amino acid similarity. The results presented in this paper will help resolving some of the long-lasting discussions in the field of T cel

    Class II MHC Self-Antigen Presentation in Human B and T Lymphocytes

    Get PDF
    Human CD4[superscript +] T cells process and present functional class II MHC-peptide complexes, but the endogenous peptide repertoire of these non-classical antigen presenting cells remains unknown. We eluted and sequenced HLA-DR-bound self-peptides presented by CD4[superscript +] T cells in order to compare the T cell-derived peptide repertoire to sequences derived from genetically identical B cells. We identified several novel epitopes derived from the T cell-specific proteome, including fragments of CD4 and IL-2. While these data confirm that T cells can present peptides derived from the T-cell specific proteome, the vast majority of peptides sequenced after elution from MHC were derived from the common proteome. From this pool, we identified several identical peptide epitopes in the T and B cell repertoire derived from common endogenous proteins as well as novel endogenous epitopes with promiscuous binding. These findings indicate that the endogenous HLA-DR-bound peptide repertoire, regardless of APC type and across MHC isotype, is largely derived from the same pool of self-protein.National Institutes of Health (U.S.) (grant P01AI039671)National Institutes of Health (U.S.) (P01AI045757

    Detection of amyloid beta aggregates in the brain of BALB/c mice after Chlamydia pneumoniae infection

    Get PDF
    Neuroinflammation, initiated by cerebral infection, is increasingly postulated as an aetiological factor in neurodegenerative diseases such as Alzheimer’s disease (AD). We investigated whether Chlamydia pneumoniae (Cpn) infection results in extracellular aggregation of amyloid beta (Aβ) in BALB/c mice. At 1 week post intranasal infection (p.i.), Cpn DNA was detected predominantly in the olfactory bulbs by PCR, whereas brains at 1 and 3 months p.i. were Cpn negative. At 1 and 3 months p.i., extracellular Aβ immunoreactivity was detected in the brain of Cpn-infected mice but also in the brain of mock-infected mice and mice that were neither Cpn infected nor mock infected. However, these extracellular Aβ aggregates showed morphological differences compared to extracellular Aβ aggregates detected in the brain of transgenic APP751SL/PS1M146L mice. These data do not unequivocally support the hypothesis that Cpn infection induces the formation of AD-like Aβ plaques in the brain of BALB/c mice, as suggested before. However, future studies are required to resolve these differences and to investigate whether Cpn is indeed an etiological factor in AD pathogenesis

    Association of Human Leukocyte Antigen with Interstitial Lung Disease in Rheumatoid Arthritis: A Protective Role for Shared Epitope

    Get PDF
    INTRODUCTION: Interstitial Lung Disease (ILD) is frequently associated with Rheumatoid Arthritis (RA) as one of extra-articular manifestations. Many studies for Human Leukocyte Antigen (HLA) allelic association with RA have been reported, but few have been validated in an RA subpopulation with ILD. In this study, we investigated the association of HLA class II alleles with ILD in RA. METHODS: An association study was conducted on HLA-DRB1, DQB1, and DPB1 in 450 Japanese RA patients that were or were not diagnosed with ILD, based on the findings of computed tomography images of the chest. RESULTS: Unexpectedly, HLA-DRB1*04 (corrected P [Pc] = 0.0054, odds ratio [OR] 0.57), shared epitope (SE) (P = 0.0055, OR 0.66) and DQB1*04 (Pc = 0.0036, OR 0.57) were associated with significantly decreased risk of ILD. In contrast, DRB1*16 (Pc = 0.0372, OR 15.21), DR2 serological group (DRB1*15 and *16 alleles) (P = 0.0020, OR 1.75) and DQB1*06 (Pc = 0.0333, OR 1.57, respectively) were significantly associated with risk of ILD. CONCLUSION: HLA-DRB1 SE was associated with reduced, while DR2 serological group (DRB1*15 and *16) with increased, risk for ILD in Japanese patients with RA

    Hydrophobic CDR3 residues promote the development of self-reactive T cells

    Get PDF
    Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3β robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the β-chain variable region (V[subscript β]) family present in the TCR or the length of the CDR3β. An index based on these findings distinguished V[subscript β]2[superscript +], V[subscript β]6[superscript +] and V[subscript β]8.2[superscript +] regulatory T cells from conventional T cells and also distinguished CD4[superscript +] T cells selected by the major histocompatibility complex (MHC) class II molecule I-A[superscript g7] (associated with the development of type 1 diabetes in NOD mice) from those selected by a non–autoimmunity-promoting MHC class II molecule I-Ab. Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires

    Liquid facets-Related (lqfR) Is Required for Egg Chamber Morphogenesis during Drosophila Oogenesis

    Get PDF
    Clathrin interactor 1 [CLINT1] (also called enthoprotin/EpsinR) is an Epsin N-terminal homology (ENTH) domain-containing adaptor protein that functions in anterograde and retrograde clathrin-mediated trafficking between the trans-Golgi network and the endosome. Removal of both Saccharomyces cerevisiae homologs, Ent3p and Ent5p, result in yeast that are viable, but that display a cold-sensitive growth phenotype and mistrafficking of various vacuolar proteins. Similarly, either knock-down or overexpression of vertebrate CLINT1 in cell culture causes mistrafficking of proteins. Here, we have characterized Drosophila CLINT1, liquid-facets Related (lqfR). LqfR is ubiquitously expressed throughout development and is localized to the Golgi and endosome. Strong hypomorphic mutants generated by imprecise P-element excision exhibit extra macrochaetae, rough eyes and are female sterile. Although essentially no eggs are laid, the ovaries do contain late-stage egg chambers that exhibit abnormal morphology. Germline clones reveal that LqfR expression in the somatic follicle cells is sufficient to rescue the oogenesis defects. Clones of mutant lqfR follicle cells have a decreased cell size consistent with a downregulation of Akt1. We find that while total Akt1 levels are increased there is also a significant decrease in activated phosphorylated Akt1. Taken together, these results show that LqfR function is required to regulate follicle cell size and signaling during Drosophila oogenesis
    corecore