41 research outputs found

    The spatial distribution of leprosy cases during 15 years of a leprosy control program in Bangladesh: An observational study

    Get PDF
    BACKGROUND: An uneven spatial distribution of leprosy can be caused by the influence of geography on the distribution of risk factors over the area, or by population characteristics that are heterogeneously distributed over the area. We studied the distribution of leprosy cases detected by a control program to identify spatial and spatio-temporal patterns of occurrence and to search for environmental risk factors for leprosy. METHODS: The houses of 11,060 leprosy cases registered in the control area during a 15-year period (1989-2003) were traced back, added to a geographic database (GIS), and plotted on digital maps. We looked for clusters of cases in space and time. Furthermore, relationships with the proximity to geographic features, such as town center, roads, rivers, and clinics, were studied. RESULTS: Several spatio-temporal clusters were observed for voluntarily reported cases. The cases within and outside clusters did not differ in age at detection, percentage with multibacillary leprosy, or sex ratio. There was no indication of the spread from one point to other parts of the district, indicating a spatially stable endemic situation during the study period. The overall risk of leprosy in the district was not associated with roads, rivers, and leprosy clinics. The risk was highest within 1 kilometer of town centers and decreased with distance from town centers. CONCLUSION: The association of a risk of leprosy with the proximity to towns indicates that rural towns may play an important role in the epidemiology of leprosy in this district. Further research on the role of towns, particularly in rural areas, is warranted

    Granulomatous Reactivation during the Course of a Leprosy Infection: Reaction or Relapse

    Get PDF
    Leprosy is a serious infectious disease whose treatment still poses some challenges. Patients are usually treated with a combination of antimicrobial drugs called multidrug therapy. Although this treatment is effective against Mycobacterium leprae, the bacillus that causes leprosy, patients may develop severe inflammatory reactions during treatment. These reactions may be either attributed to an improvement in the immunological reactivity of the patient along with the treatment, or to relapse of the disease due to the proliferation of remaining bacilli. In certain patients these two conditions may be difficult to differentiate. The present study addresses the histopathology picture of and the M. leprae bacilli in sequential biopsies taken from lesions of patients who presented such reactions aiming to improve the differentiation of the two conditions. This is important because these reactions are one of the major causes of the disabilities of the patients with leprosy, and should be treated early and appropriately. Our results show that the histopathology picture alone is not sufficient, and that bacilli's counting is necessary

    The Rotterdam Study: 2016 objectives and design update

    Full text link

    Estimating the confidence level of white matter connections obtained with MRI tractography.

    Get PDF
    BACKGROUND: Since the emergence of diffusion tensor imaging, a lot of work has been done to better understand the properties of diffusion MRI tractography. However, the validation of the reconstructed fiber connections remains problematic in many respects. For example, it is difficult to assess whether a connection is the result of the diffusion coherence contrast itself or the simple result of other uncontrolled parameters like for example: noise, brain geometry and algorithmic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we propose a method to estimate the respective contributions of diffusion coherence versus other effects to a tractography result by comparing data sets with and without diffusion coherence contrast. We use this methodology to assign a confidence level to every gray matter to gray matter connection and add this new information directly in the connectivity matrix. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that whereas we can have a strong confidence in mid- and long-range connections obtained by a tractography experiment, it is difficult to distinguish between short connections traced due to diffusion coherence contrast from those produced by chance due to the other uncontrolled factors of the tractography methodology
    corecore