1,032 research outputs found
Hmga2 is dispensable for pancreatic cancer development, metastasis, and therapy resistance.
Expression of the chromatin-associated protein HMGA2 correlates with progression, metastasis and therapy resistance in pancreatic ductal adenocarcinoma (PDAC). Hmga2 has also been identified as a marker of a transient subpopulation of PDAC cells that has increased metastatic ability. Here, we characterize the requirement for Hmga2 during growth, dissemination, and metastasis of PDAC in vivo using conditional inactivation of Hmga2 in well-established autochthonous mouse models of PDAC. Overall survival, primary tumour burden, presence of disseminated tumour cells in the peritoneal cavity or circulating tumour cells in the blood, and presence and number of metastases were not significantly different between mice with Hmga2-wildtype or Hmga2-deficient tumours. Treatment of mice with Hmga2-wildtype and Hmga2-deficient tumours with gemcitabine did not uncover a significant impact of Hmga2-deficiency on gemcitabine sensitivity. Hmga1 and Hmga2 overlap in their expression in both human and murine PDAC, however knockdown of Hmga1 in Hmga2-deficient cancer cells also did not decrease metastatic ability. Thus, Hmga2 remains a prognostic marker which identifies a metastatic cancer cell state in primary PDAC, however Hmga2 has limited if any direct functional impact on PDAC progression and therapy resistance
Dark interlayer plasmons in colloidal gold nanoparticle bi- and few-layers
We demonstrate the excitation of dark plasmon modes with linearly polarized light at normal incidence in self-assembled layers of gold nanoparticles. Because of field retardation, the incident light field induces plasmonic dipoles that are parallel within each layer but antiparallel between the layers, resulting in a vanishing net dipole moment. Using microabsorbance spectroscopy we measured a pronounced absorbance peak and reflectance dip at 1.5 eV for bi- and trilayers of gold nanoparticles with a diameter of 46 nm and 2 nm interparticle gap size. The excitations were identified as dark interlayer plasmons by finite-difference time-domain simulations. The dark plasmon modes are predicted to evolve into standing waves when further increasing the layer number, which leads to 90% transmittance of the incident light through the nanoparticle film. Our approach is easy to implement and paves the way for large-area coatings with tunable plasmon resonance
Quenching of the E2 phonon line in the Raman spectra of wurtzite GaAs nanowires caused by the dielectric polarization contrast
We investigate the Raman intensity of EH2 phonons in wurtzite GaAs nanowire
ensembles as well as single nanowires as a function of excitation wavelength.
For nanowires with radii in the range of 25 nm, an almost complete quenching
of the EH2 phonon line is observed for excitation wavelengths larger than 600
nm. The observed behavior is quantitatively explained by the dielectric
polarization contrast for the coupling of light into the GaAs nanowires. Our
results define the limits of Raman spectroscopy for the detection of the
wurtzite phase in semiconductor nanowires
The genealogy of judgement: towards a deep history of academic freedom
The classical conception of academic freedom associated with Wilhelm von Humboldt and the rise of the modern university has a quite specific cultural foundation that centres on the controversial mental faculty of 'judgement'. This article traces the roots of 'judgement' back to the Protestant Reformation, through its heyday as the signature feature of German idealism, and to its gradual loss of salience as both a philosophical and a psychological concept. This trajectory has been accompanied by a general shrinking in the scope of academic freedom from the promulgation of world-views to the offering of expert opinion
Global Diffusion in a Realistic Three-Dimensional Time-Dependent Nonturbulent Fluid Flow
We introduce and study the first model of an experimentally realizable
three-dimensional time-dependent nonturbulent fluid flow to display the
phenomenon of global diffusion of passive-scalar particles at arbitrarily small
values of the nonintegrable perturbation. This type of chaotic advection,
termed {\it resonance-induced diffusion\/}, is generic for a large class of
flows.Comment: 4 pages, uuencoded compressed postscript file, to appear in Phys.
Rev. Lett. Also available on the WWW from http://formentor.uib.es/~julyan/,
or on paper by reques
Spatial clustering of defect luminescence centers in Si-doped low resistivity Al0.82Ga0.18N
A series of Si-doped AlN-rich AlGaN layers with low resistivities was characterized by a combination of nanoscale imaging techniques. Utilizing the capability of scanning electron microscopy to reliably investigate the same sample area with different techniques, it was possible to determine the effect of doping concentration, defect distribution, and morphology on the luminescence properties of these layers. Cathodoluminescence shows that the dominant defect luminescence depends on the Si-doping concentration. For lower doped samples, the most intense peak was centered between 3.36 eV and 3.39 eV, while an additional, stronger peak appears at 3 eV for the highest doped sample. These peaks were attributed to the (VIII-ON)2− complex and the V3−III vacancy, respectively. Multimode imaging using cathodoluminescence, secondary electrons, electron channeling contrast, and atomic force microscopy demonstrates that the luminescence intensity of these peaks is not homogeneously distributed but shows a strong dependence on the topography and on the distribution of screw dislocations.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeBMBF, 13N12587, Photonische Plattformtechnologie zur ultrasensitiven und hochspezifischen biochemischen Sensorik auf Basis neuartiger UV-LEDs (UltraSens
Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods
We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips’ broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD’s confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates
Correction: Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods
Correction for 'Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods' by M. Conroy et al., Nanoscale, 2016, 8 , 11019-11026
- …
