48 research outputs found

    The Efficacy of Tetracyclines in Peripheral and Intracerebral Prion Infection

    Get PDF
    We have previously shown that tetracyclines interact with and reverse the protease resistance of pathological prion protein extracted from scrapie-infected animals and patients with all forms of Creutzfeldt-Jakob disease, lowering the prion titre and prolonging survival of cerebrally infected animals. To investigate the effectiveness of these drugs as anti-prion agents Syrian hamsters were inoculated intramuscularly or subcutaneously with 263K scrapie strain at a 10−4 dilution. Tetracyclines were injected intramuscularly or intraperitoneally at the dose of 10 mg/kg. A single intramuscular dose of doxycycline one hour after infection in the same site of inoculation prolonged median survival by 64%. Intraperitoneal doses of tetracyclines every two days for 40 or 44 days increased survival time by 25% (doxycycline), 32% (tetracycline); and 81% (minocycline) after intramuscular infection, and 35% (doxycycline) after subcutaneous infection. To extend the therapeutic potential of tetracyclines, we investigated the efficacy of direct infusion of tetracyclines in advanced infection. Since intracerebroventricular infusion of tetracycline solutions can cause overt acute toxicity in animals, we entrapped the drugs in liposomes. Animals were inoculated intracerebrally with a 10−4 dilution of the 263K scrapie strain. A single intracerebroventricular infusion of 25 µg/ 20 µl of doxycycline or minocycline entrapped in liposomes was administered 60 days after inoculation, when 50% of animals showed initial symptoms of the disease. Median survival increased of 8.1% with doxycycline and 10% with minocycline. These data suggest that tetracyclines might have therapeutic potential for humans

    Prediction of sinus rhythm maintenance following DC-cardioversion of persistent atrial fibrillation – the role of atrial cycle length

    Get PDF
    BACKGROUND: Atrial electrical remodeling has been shown to influence the outcome the outcome following cardioversion of atrial fibrillation (AF) in experimental studies. The aim of the present study was to find out whether a non-invasively measured atrial fibrillatory cycle length, alone or in combination with other non-invasive parameters, could predict sinus rhythm maintenance after cardioversion of AF. METHODS: Dominant atrial cycle length (DACL), a previously validated non-invasive index of atrial refractoriness, was measured from lead V1 and a unipolar oesophageal lead prior to cardioversion in 37 patients with persistent AF undergoing their first cardioversion. RESULTS: 32 patients were successfully cardioverted to sinus rhythm. The mean DACL in the 22 patients who suffered recurrence of AF within 6 weeks was 152 ± 15 ms (V1) and 147 ± 14 ms (oesophagus) compared to 155 ± 17 ms (V1) and 151 ± 18 ms (oesophagus) in those maintaining sinus rhythm (NS). Left atrial diameter was 48 ± 4 mm and 44 ± 7 mm respectively (NS). The optimal parameter predicting maintenance of sinus rhythm after 6 weeks appeared to be the ratio of the lowest dominant atrial cycle length (oesophageal lead or V1) to left atrial diameter. This ratio was significantly higher in patients remaining in sinus rhythm (3.4 ± 0.6 vs. 3.1 ± 0.4 ms/mm respectively, p = 0.04). CONCLUSION: In this study neither an index of atrial refractory period nor left atrial diameter alone were predictors of AF recurrence within the 6 weeks of follow-up. The ratio of the two (combining electrophysiological and anatomical measurements) only slightly improve the identification of patients at high risk of recurrence of persistent AF. Consequently, other ways to asses electrical remodeling and / or other variables besides electrical remodeling are involved in determining the outcome following cardioversion

    Nutrition and cancer: A review of the evidence for an anti-cancer diet

    Get PDF
    It has been estimated that 30–40 percent of all cancers can be prevented by lifestyle and dietary measures alone. Obesity, nutrient sparse foods such as concentrated sugars and refined flour products that contribute to impaired glucose metabolism (which leads to diabetes), low fiber intake, consumption of red meat, and imbalance of omega 3 and omega 6 fats all contribute to excess cancer risk. Intake of flax seed, especially its lignan fraction, and abundant portions of fruits and vegetables will lower cancer risk. Allium and cruciferous vegetables are especially beneficial, with broccoli sprouts being the densest source of sulforophane. Protective elements in a cancer prevention diet include selenium, folic acid, vitamin B-12, vitamin D, chlorophyll, and antioxidants such as the carotenoids (α-carotene, β-carotene, lycopene, lutein, cryptoxanthin). Ascorbic acid has limited benefits orally, but could be very beneficial intravenously. Supplementary use of oral digestive enzymes and probiotics also has merit as anticancer dietary measures. When a diet is compiled according to the guidelines here it is likely that there would be at least a 60–70 percent decrease in breast, colorectal, and prostate cancers, and even a 40–50 percent decrease in lung cancer, along with similar reductions in cancers at other sites. Such a diet would be conducive to preventing cancer and would favor recovery from cancer as well

    A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship

    Get PDF
    The most common sustained cardiac arrhythmias in humans are atrial tachyarrhythmias, mainly atrial fibrillation. Areas of complex fractionated atrial electrograms and high dominant frequency have been proposed as critical regions for maintaining atrial fibrillation; however, there is a paucity of data on the relationship between the characteristics of electrograms and the propagation pattern underlying them. In this study, a realistic 3D computer model of the human atria has been developed to investigate this relationship. The model includes a realistic geometry with fiber orientation, anisotropic conductivity and electrophysiological heterogeneity. We simulated different tachyarrhythmic episodes applying both transient and continuous ectopic activity. Electrograms and their dominant frequency and organization index values were calculated over the entire atrial surface. Our simulations show electrograms with simple potentials, with little or no cycle length variations, narrow frequency peaks and high organization index values during stable and regular activity as the observed in atrial flutter, atrial tachycardia (except in areas of conduction block) and in areas closer to ectopic activity during focal atrial fibrillation. By contrast, cycle length variations and polymorphic electrograms with single, double and fragmented potentials were observed in areas of irregular and unstable activity during atrial fibrillation episodes. Our results also show: 1) electrograms with potentials without negative deflection related to spiral or curved wavefronts that pass over the recording point and move away, 2) potentials with a much greater proportion of positive deflection than negative in areas of wave collisions, 3) double potentials related with wave fragmentations or blocking lines and 4) fragmented electrograms associated with pivot points. Our model is the first human atrial model with realistic fiber orientation used to investigate the relationship between different atrial arrhythmic propagation patterns and the electrograms observed at more than 43000 points on the atrial surface.This work was partially supported by the Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica, Ministerio de Ciencia e Innovacion of Spain (TEC2008-02090), by the Plan Avanza (Accion Estrategica de Telecomunicaciones y Sociedad de la Informacion), Ministerio de Industria Turismo y Comercio of Spain (TSI-020100-2010-469), by the Programa Prometeo 2012 of the Generalitat Valenciana and by the Programa de Apoyo a la Investigacion y Desarrollo de la Universitat Politecnica de Valencia (PAID-06-11-2002). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Tobón Zuluaga, C.; Ruiz Villa, CA.; Heidenreich, E.; Romero Pérez, L.; Hornero, F.; Saiz Rodríguez, FJ. (2013). A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship. PLoS ONE. 8(2):1-13. https://doi.org/10.1371/journal.pone.0050883S11382Ho SY, Sanchez-Quintana D, Anderson RH (1998) Can anatomy define electric pathways? In: International Workshop on Computer Simulation and Experimental Assessment of Electrical Cardiac Function, Lausanne, Switzerland. 77–86.Tobón C (2009) Evaluación de factores que provocan fibrilación auricular y de su tratamiento mediante técnicas quirúrgicas. Estudio de simulación. Master Thesis Universitat Politècnica de València.Ruiz C (2010) Estudio de la vulnerabilidad a reentradas a través de modelos matemáticos y simulación de la aurícula humana. Doctoral Thesis Universitat Politècnica de València.Tobón C (2010) Modelización y evaluación de factores que favorecen las arritmias auriculares y su tratamiento mediante técnicas quirúrgicas. Estudio de simulación. Doctoral Thesis Universitat Politècnica de València.Henriquez, C. S., & Papazoglou, A. A. (1996). Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis. Proceedings of the IEEE, 84(3), 334-354. doi:10.1109/5.486738Grimm, R. A., Chandra, S., Klein, A. L., Stewart, W. J., Black, I. W., Kidwell, G. A., & Thomas, J. D. (1996). Characterization of left atrial appendage Doppler flow in atrial fibrillation and flutter by Fourier analysis. American Heart Journal, 132(2), 286-296. doi:10.1016/s0002-8703(96)90424-xMaleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). K+ current changes account for the rate dependence of the action potential in the human atrial myocyte. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1398-H1410. doi:10.1152/ajpheart.00411.200

    Wave similarity mapping shows the spatiotemporal distribution of fibrillatory wave complexity in the human right atrium during paroxysmal and chronic atrial fibrillation

    No full text
    Introduction: The complexity of waveforms during atrial fibrillation may reflect critical activation patterns for the arrhythmia perpetuation. In this study, we introduce a novel concept of map, based on the analysis of the wave morphology, which gives a direct evidence in the human right atrium on the spatiotemporal distribution of fibrillatory wave complexity in paroxysmal (PAF) and chronic (CAF) atrial fibrillation. Methods and Results: Electrograms were recorded from a 64-electrode catheter in the right atrium of 15 patients during PAF (n = 8) and CAF (n = 7). Wave similarity maps were constructed by calculating the degree of morphological similarity of activation waves (S) at each atrial site and by following its temporal evolution. During PAF the spatiotemporal distribution of the waveforms was highly consistent across the subjects and was determined by the anatomic location. Wave similarity maps showed the existence of an extended area with low similarity index, which covered the low posteroseptal atrium (S = 0.28 \uc2\ub1 0.09) and the septal region (S = 0.22 \uc2\ub1 0.04), and the presence of a large tongue with high similarity index, which penetrated the lateral wall (S = 0.55 \uc2\ub1 0.08) starting from the high anterolateral atrium (S = 0.54 \uc2\ub1 0.06). A completely different spatiotemporal pattern was seen during CAF. No distinct regions with different similarity indexes were recognized, but a uniformly distributed low similarity index (S = 0.27 \uc2\ub1 0.07) was found. The spatial pattern was highly stable in time with fluctuations of S < 0.04. Conclusion: Quantification of the spatiotemporal distribution of fibrillatory wave complexity is feasible in humans by wave similarity mapping. Anatomic anchoring of waveforms during PAF and pattern destruction during CAF was determined
    corecore