1,841 research outputs found

    Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain

    Get PDF
    We present a new method for magnetization transfer (MT) ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay) and reference images (5-8 s delay) for MT ratio (MTR) imaging of the brain. The effects of varying flip angle and phase encoding (PE) order were investigated experimentally in normal, healthy subjects. Values of up to ∼ 50% and ∼ 40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma

    C5 Extract Induces Apoptosis in B16F10 Murine Melanoma Cells through Extrinsic and Intrinsic Apoptotic Pathways and Sub-G1 Phase Arrest

    Get PDF
    Purpose: To investigate the anti-cancer activities of C5 extract (C5E), a new herbal preparation from Korea, on B16F10 cells.Methods: The anti-proliferative effects of C5E were assessed by culturing B16F10 cells in the presence or absence of C5E. Cell cycle progression was analyzed by PI staining using flow cytometry. The quantities of apoptosis-inducing proteins were measured by Western blot.Results: C5E inhibited the proliferation of B16F10 cells but not human keratinocytes. C5E induced S phase arrest by interfering with cell regulatory factors such as cyclins B1, D1, D3, and E, and cyclindependent kinase 2, in B16F10 cells. Furthermore, immunoblot analysis confirmed that treatment with C5E induced apoptosis and cleaved caspase-3, poly (ADP-ribose) polymerase, via extrinsic pathway, whereas Bcl-2 expression was down-regulated. In addition, the suppression of cell proliferation by C5E is through down-regulation of p-Akt, up-regulation of phosphatase and tensin homolog protein expression via phosphoinositol 3 kinase survival signaling pathways in B16F10 cells. The combined cytotoxic effects of C5E and vinblastine generated 10 % increase in activity in contrast to the sum of the inhibitory effects of the individual agents.Conclusion: C5E shows promising anti-cancer activity and can be a useful adjuvant with vinblastine in combination therapeutic treatment of skin cancer.Keywords: Melanoma, Apoptosis, Anti-cancer, p53, Vinblastine, Cell cycle arrest, Caspas

    Direct Conversion of Mouse Fibroblasts into Cholangiocyte Progenitor Cells

    Get PDF
    Disorders of the biliary epithelium, known as cholangiopathies, cause severe and irreversible liver diseases. The limited accessibility of bile duct precludes modeling of several cholangiocyte-mediated diseases. Therefore, novel approaches for obtaining functional cholangiocytes with high purity are needed. Previous work has shown that the combination of Hnf1β and Foxa3 could directly convert mouse fibroblasts into bipotential hepatic stem cell-like cells, termed iHepSCs. However, the efficiency of converting fibroblasts into iHepSCs is low, and these iHepSCs exhibit extremely low differentiation potential into cholangiocytes, thus hindering the translation of iHepSCs to the clinic. Here, we describe that the expression of Hnf1α and Foxa3 dramatically facilitates the robust generation of iHepSCs. Notably, prolonged in vitro culture of Hnf1α- and Foxa3-derived iHepSCs induces a Notch signaling-mediated secondary conversion into cholangiocyte progenitor-like cells that display dramatically enhanced differentiation capacity into mature cholangiocytes. Our study provides a robust two-step approach for obtaining cholangiocyte progenitor-like cells using defined factors

    The increased sensitivity of qPCR in comparison to Kato-Katz is required for the accurate assessment of the prevalence of soil-transmitted helminth infection in settings that have received multiple rounds of mass drug administration

    Get PDF
    Background The most commonly used diagnostic tool for soil-transmitted helminths (STH) is the Kato-Katz (KK) thick smear technique. However, numerous studies have suggested that the sensitivity of KK can be problematic, especially in low prevalence and low intensity settings. An emerging alternative is quantitative polymerase chain reaction (qPCR). Methods In this study, both KK and qPCR were conducted on stool samples from 648 participants in an STH epidemiology study conducted in the delta region of Myanmar in June 2016. Results Prevalence of any STH was 20.68% by KK and 45.06% by qPCR. Prevalence of each individual STH was also higher by qPCR than KK, the biggest difference was for hookworm with an approximately 4-fold increase between the two diagnostic techniques. Prevalence of Ancylostoma ceylanicum, a parasite predominately found in dogs, was 4.63%, indicating that there is the possibility of zoonotic transmission in the study setting. In individuals with moderate to high intensity infections there is evidence for a linear relationship between eggs per gram (EPG) of faeces, derived from KK, and DNA copy number, derived from qPCR which is particularly strong for Ascaris lumbricoides. Conclusions The use of qPCR in low prevalence settings is important to accurately assess the epidemiological situation and plan control strategies for the ‘end game’. However, more work is required to accurately assess STH intensity from qPCR results and to reduce the cost of qPCR so that is widely accessible in STH endemic countries.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data

    Inter-slice blood flow and magnetization transfer effects as a new simultaneous imaging strategy

    Get PDF
    The recent blood flow and magnetization transfer (MT) technique termed alternate ascending/ descending directional navigation (ALADDIN) achieves the contrast using interslice blood flow and MT effects with no separate preparation RF pulse, thereby potentially overcoming limitations of conventional methods. In this study, we examined the signal characteristics of ALADDIN as a simultaneous blood flow and MT imaging strategy, by comparing it with pseudo-continuous ASL (pCASL) and conventional MT asymmetry (MTA) methods, all of which had the same bSSFP readout. Bloch-equation simulations and experiments showed ALADDIN perfusion signals increased with flip angle, whereas MTA signals peaked at flip angle around 45°-60°. ALADDIN provided signals comparable to those of pCASL and conventional MTA methods emulating the first, second, and third prior slices of ALADDIN under the same scan conditions, suggesting ALADDIN signals to be superposition of signals from multiple labeling planes. The quantitative cerebral blood flow signals from a modified continuous ASL model overestimated the perfusion signals compared to those measured with a pulsed ASL method. Simultaneous mapping of blood flow, MTA, and MT ratio in the whole brain is feasible with ALADDIN within a clinically reasonable time, which can potentially help diagnosis of various diseases

    Spin and Chirality Effects in Antler-Topology Processes at High Energy e+e−e^+e^- Colliders

    Full text link
    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e+e−→P+P−→(ℓ+D0)(ℓ−Dˉ0)e^+e^-\to\mathcal{P}^+\mathcal{P}^-\to (\ell^+ \mathcal{D}^0) (\ell^-\mathcal{\bar{D}}^0) at high energy e+e−e^+e^- colliders with polarized beams. Generally the production process e+e−→P+P−e^+e^-\to\mathcal{P}^+\mathcal{P}^- can occur not only through the ss-channel exchange of vector bosons, V0\mathcal{V}^0, including the neutral Standard Model (SM) gauge bosons, γ\gamma and ZZ, but also through the ss- and tt-channel exchanges of new neutral states, S0\mathcal{S}^0 and T0\mathcal{T}^0, and the uu-channel exchange of new doubly-charged states, U−−\mathcal{U}^{--}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P+P−\mathcal{P}^+\mathcal{P}^- pair production in e+e−e^+e^- collisions with longitudinal and transverse polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high energy e+e−e^+e^- collider.Comment: 50 pages, 14 figures, 6 tables, matches version published in EPJ

    My Prosthetic Knee is Becoming Unstable

    Get PDF
    Total knee arthroplasty (TKA) has becoming one of most common surgical procedure with good outcome, pain reduction and vastly improve lifestyle of ageing population today with over 10,000 cases done yearly in Malaysia. The uptrend of this surgical procedure results in increasing complications and peri-prosthetic fracture is estimated to range between 0.3 to 2.5% of TKA complications

    Pairwise covariance adds little to secondary structure prediction but improves the prediction of non-canonical local structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amino acid sequence probability distributions, or profiles, have been used successfully to predict secondary structure and local structure in proteins. Profile models assume the statistical independence of each position in the sequence, but the energetics of protein folding is better captured in a scoring function that is based on pairwise interactions, like a force field.</p> <p>Results</p> <p>I-sites motifs are short sequence/structure motifs that populate the protein structure database due to energy-driven convergent evolution. Here we show that a pairwise covariant sequence model does not predict alpha helix or beta strand significantly better overall than a profile-based model, but it does improve the prediction of certain loop motifs. The finding is best explained by considering secondary structure profiles as multivariant, all-or-none models, which subsume covariant models. Pairwise covariance is nonetheless present and energetically rational. Examples of negative design are present, where the covariances disfavor non-native structures.</p> <p>Conclusion</p> <p>Measured pairwise covariances are shown to be statistically robust in cross-validation tests, as long as the amino acid alphabet is reduced to nine classes. An updated I-sites local structure motif library that provides sequence covariance information for all types of local structure in globular proteins and a web server for local structure prediction are available at <url>http://www.bioinfo.rpi.edu/bystrc/hmmstr/server.php</url>.</p
    • …
    corecore