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SUMMARY
Disorders of the biliary epithelium, knownas cholangiopathies, cause severe and irreversible liver diseases. The limited accessibility of bile

duct precludes modeling of several cholangiocyte-mediated diseases. Therefore, novel approaches for obtaining functional cholangio-

cytes with high purity are needed. Previous work has shown that the combination of Hnf1b and Foxa3 could directly convert mouse

fibroblasts into bipotential hepatic stem cell-like cells, termed iHepSCs. However, the efficiency of converting fibroblasts into iHepSCs

is low, and these iHepSCs exhibit extremely low differentiation potential into cholangiocytes, thus hindering the translation of iHepSCs

to the clinic. Here, we describe that the expression ofHnf1a and Foxa3 dramatically facilitates the robust generation of iHepSCs. Notably,

prolonged in vitro culture of Hnf1a- and Foxa3-derived iHepSCs induces a Notch signaling-mediated secondary conversion into cholan-

giocyte progenitor-like cells that display dramatically enhanced differentiation capacity into mature cholangiocytes. Our study provides

a robust two-step approach for obtaining cholangiocyte progenitor-like cells using defined factors.
INTRODUCTION

Cell therapy using hepatocytes has been highlighted as a

promising treatment for repairing the irreversible liver

diseases as an alternative to liver transplantation (Dhawan

et al., 2010; Forbes et al., 2015). However, due to the

limited accessibility and non-expandable nature of pri-

mary hepatocytes, a number of studies have attempted

to generate hepatocyte-like cells from distinct types of

stem cells, such as pluripotent stem cells (PSCs) (Hay

et al., 2008; He et al., 2014; Si-Tayeb et al., 2010; Zhang

et al., 2012). Indeed, hepatocyte-like cells generated from

PSCs clearly share the key cellular features of primary

hepatocytes (Hay et al., 2008; Si-Tayeb et al., 2010), but

ethical and safety concerns abound on the use of

PSC-derived hepatocyte-like cells in the clinic (Tang

et al., 2011). To obviate the issues associated with using

PSC-derived hepatocyte-like cells, recent studies directly

generated hepatocyte-like cells, namely iHeps (induced

hepatocyte-like cells), from both mouse and human so-

matic cells with defined factors without the cells having

to first pass through a PSC state (Du et al., 2014; Huang

et al., 2011, 2014; Kim et al., 2015; Lim et al., 2016; Sekiya

and Suzuki, 2011).

Recent studies have demonstrated that the relatively

small population of non-parenchymal cell types, such as
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cholangiocytes, plays also an important role in liver regen-

eration (Alvaro et al., 2007; Walter et al., 2014). Recently

developed direct conversion technology has been applied

for generating self-renewing and bipotential HepSCs, so-

called induced hepatic stem-like cells (iHepSCs), using

the defined factors Hnf1b and Foxa3 (Yu et al., 2013). But

prior to the translation of iHepSC technology to the clinic,

a few issues need clear resolution. First, the final factor

combination for iHepSC generation was determined

without considering the actual conversion efficiency using

authenticHepSC-specificmarkers. Second, the efficiency of

converting somatic cells into iHepSCs is very low, less than

0.5%, and needs to be improved. Third, and most impor-

tantly, iHepSCs exhibit very low differentiation potential

into mature cholangiocytes, which strongly necessitates

further optimization of the combination of factors used

for obtaining either iHepSCs with enhanced cholangiocyte

differentiation potential or cholangiocyte progenitor cells

(CPCs).

In the current study, we revisited the roles of several

HepSC-specific candidate factors in reprogramming and

found that the combination of Hnf1a and Foxa3 dramati-

cally facilitates the generation of iHepSCs that are tran-

scriptionally closer to the endogenous hepatic progenitor

cells than are iHepSCs from previous study. Moreover, the

prolonged culture of Hnf1a and Foxa3-derived iHepSCs
thor(s).
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could induce further reprogramming that is mediated by

Notch signaling into cholangiocyte progenitor-like cells,

so-called induced CPCs (iCPCs), which display dramati-

cally enhanced differentiation potential into mature chol-

angiocytes. Our study provides a strategy for generating

iCPCs using defined factors.
RESULTS

Hnf1a and Foxa3Robustly InduceHepatic Stemness in

Fibroblasts

To define the combination of factors that is required

for inducing either HepSC or CPC identities in somatic

cells, we selected five candidate factors based on their roles

in liver development (Foxa1, Foxa2, and Hnf1b) and regen-

eration (Foxa3 and Hnf1a). Mouse embryonic fibroblasts

(MEFs), which are devoid of epithelial cells, were trans-

duced with all candidate factors as described previously

(Lim et al., 2016) (Figure 1A). After 2 weeks of transduction,

we observed the growth of epithelial colonies of a compact

and three-dimensional (3D) shape that was morphologi-

cally distinct from that typical of iHep colonies (Fig-

ure S1A). Notably, a significant number of colonies ex-

pressed both the fetal hepatocyte marker a-fetoprotein

(AFP) and the cholangiocyte marker cytokeratin 19

(CK19) (67.5% ± 13.5%; Figures 1B and 1C). Moreover,

these colonies were strongly positive for other cholangio-

cyte and HepSC markers, such as CK7 and TROP2, respec-

tively (Figure 1B). However, partially reprogrammed cells

with epithelial morphology failed to activate both AFP

and CK19 (Figure S1B), indicating that our unbiased

approach could accurately measure the conversion effi-

ciency. Taken together, the epithelial colonies that had

emerged from the five factor-transduced MEFs might

have a cellular identity similar to HepSCs and distinct

from iHeps.
Figure 1. Direct Conversion of Fibroblasts into iHepSCs by Hnf1a
(A) Schematic depicting the procedure for the direct conversion of fi
(B) Immunofluorescence of iHepSC colony after 2 weeks of transducin
bars, 100 mm.
(C) The number of AFP+/CK19+ colonies was counted after 2 weeks o
pendent experiments. Two-tailed Student’s t test: *p < 0.05, **p < 0
(D and E) Expression patterns of hepatocyte-, cholangiocyte-, and He
MEFs with different combinations of factors.
(F) The number of AFP+/CK19+ colonies was counted on day 14 post tr
(1a3). Data are presented as mean ± SD from three independent expe
(G) Immunofluorescence of 1a3-transduced iHepSC colony. The nucle
(H) Percentage of EPCAM+ cells was evaluated by flow cytometry 2 wee
transduced cells, were used as a negative control. Data are presente
Student’s t test: *p < 0.05.
(I) Expression of hepatocyte-, cholangiocyte-, and HepSC-specific ma
were normalized to those of EPCAM+ cells and are presented as mean
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We next attempted to minimize the number of factors

required for iHepSC conversion. For this, we removed the

factors from the cocktail one by one and found that

removing any of the three factors Foxa2, Foxa3, and

Hnf1a drastically reduced the number of AFP+/CK19+

iHepSC colonies (Figure 1C). The removal of either Hnf1b

or Foxa1 did not negatively influence both iHepSC conver-

sion and hepatic gene activation (Figures 1C and 1D). In

contrast, iHepSCs generated in the absence of Hnf1a dis-

played poor activation of endogenous HepSCmarkers (Fig-

ure 1D). However, the gene expression pattern of iHepSCs

generated in the absence of either Foxa2 or Foxa3was com-

parable with that of iHepSCs generated with all five factors

together (Figure 1D). Thus, we hypothesized that Hnf1a

might play a key role in the transcriptional activation of

the endogenous hepatic program and that Foxa2 and

Foxa3might rather play assistant roles that would enhance

the conversion efficiency (Figures 1C and 1D). To test our

hypothesis, we introduced Hnf1a with either Foxa2 (1a2)

or Foxa3 (1a3) in MEFs. Interestingly, 1a3-transduced

MEFs exhibited the more mature expression patterns of

both cholangiocyte (CK7 and CK19) and HepSC (Epcam

and Trop2) markers (Figure 1E) with significantly higher

numbers of AFP+/CK19+ iHepSC colonies (Figure 1F) than

did 1a2-transduced MEFs. The majority of 1a3-derived

iHepSC colonies were strongly double-positive for other

hepatocyte and cholangiocyte markers (Figure 1G).

Notably, 1a3-transduced MEFs produced a significantly

higher number of EPCAM+ cells strongly expressing hepa-

tocyte-, cholangiocyte-, and HepSC-specific markers (Fig-

ures 1H and 1I). All the clonal lines derived from 1a3-trans-

duced MEFs displayed the features typical of HepSCs as

determined by a series of gene expression analyses (Figures

S1C–S1E). Finally, iHepSCs could be generated frommouse

adult tail-tip fibroblasts and were stably expanded for more

than 10 passages without losing features typical of HepSCs

(Figures S1F and S1G). Notably, three-factor (Hnf1a, Foxa2,
and Foxa3
broblasts into iHepSCs.
g all five transcription factors. Nuclei were stained with DAPI. Scale

f transduction. Data are presented as mean ± SD from three inde-
.01.
pSC-specific markers were analyzed by RT-PCR after transduction of

ansduction of MEFs with Hnf1a together with Foxa2 (1a2) or Foxa3
riments. Two-tailed Student’s t test: *p < 0.05.
i were stained with DAPI. Scale bars, 100 mm.
ks after transduction of MEFs with either 1a2 or 1a3. MEFs, i.e., non-
d as mean ± SD from three independent experiments. Two-tailed

rkers in EPCAM+ or EPCAM� cells was measured by qPCR. The levels
± SD from triplicate values.



Figure 2. Differential Potential of 1a3-iHepSCs into Mature Hepatocytes and Cholangiocytes In Vitro
(A) Immunofluorescence of established 1a3-iHepSC-derived hepatocytes. The nuclei were stained with DAPI. Scale bar, 100 mm.
(B) In vitro functional analyses of 1a3-iHepSC–derived hepatocytes by periodic acid-Schiff (PAS) staining and indocyanine green (ICG)
uptake assay. Scale bars, 100 mm.
(C) Serum albumin secreted from 1a3-iHepSC-derived hepatocytes was measured by ELISA. MEFs and primary hepatocytes were used as
negative and positive controls, respectively. Data are presented as mean ± SD from triplicate values.
(D) Morphology of 1a3-iHepSC–derived cholangiocytes in branches and ductal cysts was analyzed under bright-field (upper panel) and
immunofluorescence (lower panel) microscopy. Antibody directed against CK19 was used, and the nuclei were stained with DAPI. Scale bar,
100 mm.
(E) Expression of mature cholangiocyte markers was evaluated by qPCR upon cholangiocyte differentiation. All the values were normalized
to those of undifferentiated 1a3-iHepSCs. Bile duct tissues were used as a positive control. Data are presented as mean ± SD of triplicate
values from three individual cell lines. Two-tailed Student’s t test: *p < 0.05, **p < 0.01.
(F) Transport of rhodamine-123 (Rho123) into the central lumen of a ductal cyst. Treatment with the MDR inhibitor verapamil (Ver) to
block the transport activity of 1a3-iHepSC-derived ductal cysts. Scale bar, 100 mm.
(G) Quantification of degree of cyst swelling of 1a3-iHepSC–derived cholangiocytes after 24 hr of stimulation with forskolin (FSK) and
IBMX in the absence or presence of the CFTR inhibitor CFTRinh-172. The degree of swelling after 24 hr of stimulation was quantified based
on the unstimulated cyst size. Five cysts in each group from three independent experiments were analyzed. Data are presented as
mean ± SD. Paired t test: *p < 0.05.
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and Foxa3; 1a23) could not further enhance reprogram-

ming efficiency compared with 1a3 (Figure S1H). Taken

together, our data clearly show that 1a3 is the best combi-

nation for a robust induction of hepatic stemness on

somatic cells but is not enough for inducing a CPC cell

identity.

1a3-iHepSCs Can Differentiate into Mature

Hepatocytes and Cholangiocytes In Vitro

We next assessed the in vitro differentiation potential of

1a3-derived iHepSCs (hereafter referred to as 1a3-iHepSCs)

to determine whether they had acquired hepatic stemness.

Within 24 hr of hepatic differentiation (Li et al., 2006; Yu

et al., 2013), aggregates typical of differentiated cells were

readily observed (Figure S2A). After 7 days, we were able

to identify mature aggregates with strong activation of

albumin (ALB) and complete inactivation of CK19 (Fig-

ure 2A). RT-PCR analysis also showed that the expression

of hepatocyte markers was strongly upregulated, whereas

both cholangiocyte and HepSC markers were dramatically

suppressed (Figure S2B). Moreover, 1a3-iHepSCs were

found to display glycogen storage, xenobioticmetabolic ac-

tivity, and albumin secretion upon hepatic differentiation,

indicating that they have the potential to differentiate into

mature hepatocytes in vitro (Figures 2B and 2C).

After 7 days of differentiation into cholangiocytes (Li

et al., 2010), 1a3-iHepSCs had differentiated into CK19+

cholangiocytes that exhibited a typical branching structure

(Figure 2D, left). Under 3D differentiation conditions con-

taining 40% Matrigel (Tanimizu et al., 2007), we observed

CK19+ mature cystic structures (Figure 2D, right). The cysts

strongly expressed cholangiocyte-associated genes (Fig-

ure 2E) and exhibited apicobasal polarity as shown by the

localization of F-actin in the inner layer of the lumen (Fig-

ure S2C), demonstrating that cholangiocytes that had

differentiated from1a3-iHepSCs sharemolecular and struc-

tural characteristics with primary cholangiocytes. A major
Figure 3. Hnf1a Plays a Critical Role in the Induction Phase of H
(A) Schematic comparing the direct conversion process of fibroblasts
(1b3).
(B) Conversion efficiency (%) into iHepSCs from the MEFs transduced
using an antibody directed against E-cadherin (left) or EPCAM (right
(C) Expression of hepatocyte-, cholangiocyte-, and HepSC-specific m
duction of MEFs with each reprogramming cocktail. The levels were
triplicate values.
(D) Heatmaps representing the expression patterns of markers related
cycle, hepatocytes, cholangiocytes, and hepatic progenitors after 12
indicates gene expression in log2 scale. Red and green colors represe
(E) TRNs in the MEFs after 12 days of transducing MEFs with 1a3 or 1b3
MEFs by CellNet. Yellow and red dashed circles represent MEF- and LE
(F) Heatmaps describing gene expression profiles in LEPC- and MEF-
Hierarchical clustering analysis based on the gene expression profiles
negative and positive controls, respectively.
physiological function of cholangiocytes is the secretion

of substances such as water and ions for modulating bile

composition, and this process is mediated by transmem-

brane channel proteins such as multidrug resistance pro-

tein 1 (MDR1) and cystic fibrosis transmembrane regulator

(CFTR). Thus, we examined the transporter activity of

MDR1 in the cholangiocytes derived from 1a3-iHepSCs

by evaluating the efflux of rhodamine-123 (Rho123), and

found that the cholangiocytes could transport Rho123

into the luminal space (Figure S2D). However, in the

presence of the MDR1 inhibitor verapamil, Rho123 did

not accumulate in the lumen, indicating that the differen-

tiated cholangiocytes in cysts behave like their in vivo

counterpart (Figure 2F). We also performed a forskolin-

induced swelling assay to monitor CFTR-mediated fluid

transport and cyst swelling in the cholangiocytes. After

24 hr of forskolin treatment, the size of the cysts had

increased by 3.31 ± 0.44-fold (Figures 2G and S2E). In

contrast, the forskolin/IBMX (3-isobutyl-1-methylxan-

thine)-induced cyst swelling was abolished in the presence

of CFTRinh-172, a CFTR inhibitor, showing that the size of

the cysts that had differentiated from 1a3-iHepSCs is regu-

lated by CFTR, as in in vivo cholangiocytes (Figure 2G).

Notably, iHepSCs from adult tail-tip fibroblasts also differ-

entiated into both hepatocytes and cholangiocytes (Figures

S2F and S2G). Taken together, our data clearly indicate

that 1a3-iHepSCs possess an in vitro differentiation poten-

tial into both functionally mature hepatocytes and

cholangiocytes.

Hnf1a Plays a Critical Role in the Induction Phase of

Hepatic Stemness Acquisition

As the previous study (Yu et al., 2013) had used Hnf1b and

Foxa3 (1b3) for converting fibroblasts into iHepSCs, we

decided to compare the roles of the two reprogramming

cocktails 1a3 and 1b3 during the induction phase of

hepatic stemness acquisition (Figure 3A). In line with our
epatic Stemness Acquisition
into iHepSCs driven by Foxa3 together with Hnf1a (1a3) or Hnf1b

with either 1a3 or 1b3 was determined by flow-cytometric analysis
) on day 14 of transduction.
arkers was analyzed by qPCR in a time course manner after trans-
normalized to those of MEFs and are presented as mean ± SD of

to mesenchymal-epithelial transition (MET) process, fibroblasts, cell
days of introducing 1a3 or 1b3 into MEFs. Color bar at the bottom
nt higher and lower expression levels, respectively.
. Subnetwork modules were extracted using DEGs between LEPCs and
PC-specific modules, respectively.
specific modules in MEFs 12 days post infection with 1a3 or 1b3.
from the heatmap is shown at the top. MEFs and LEPCs were used as
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Figure 4. 1a3-iHepSCs Are Transcriptionally Closer Than 1b3-iHepSCs to LEPCs
(A) RT-PCR analysis comparing the expression pattern of hepatocyte-, cholangiocyte-, and HepSC-specific markers in three independent
clonal lines from 1a3- and 1b3-iHepSCs, which were generated by fluorescence-activated cell sorting with EPCAM.
(B) Heatmap analysis describing whole-genome expression profiles of 1a3- and 1b3-iHepSCs at passage 10. Hierarchical clustering analysis
based on the expression profiles from the heatmap is depicted at the top. MEFs and LEPCs were used as negative and positive controls,
respectively.

(legend continued on next page)
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screening assay results (Figure 1), 1a3-transduced MEFs

produced significantly increased numbers of either E-cad-

herin+ or EPCAM+ populations compared with the

1b3-transduced MEFs (Figure 3B). This increased yield of

1a3 was due to neither distinct transduction levels of indi-

vidual transgenes nor distinct proliferation rates of the

MEFs transduced with distinct combinations of factors

(Figures S3A and S3B). Notably, 1a3-transduced MEFs

exhibited dramatically accelerated conversion kinetics to-

ward a HepSC state, as evidenced by the enhanced activa-

tion of genes associated with hepatic stemness compared

with 1b3-transduced MEFs (Figures 3C, 3D, and S3C).

Taken together, these data suggest that a conversion cock-

tail 1a3 is more potent than 1b3 for the robust induction

of hepatic stemness.

To explore the mechanism underlying 1a3-mediated

enhanced iHepSC generation, wemonitored the early tran-

scriptional changes taking place following the introduc-

tion of 1a3 or 1b3 to the cells.Whole-genome transcription

analysis revealed that a similar number of genes was either

up- or downregulated (Figure S3D), and that both combina-

tions activated similar pathways involved in various meta-

bolic functions of the liver (Figure S3E). Despite this high

similarity (Figure S3F), we found that 441 and 357 genes

were highly enriched in 1a3- and 1b3-transduced MEFs,

respectively (Figure S3G). Gene ontology (GO) analysis of

differentially expressed genes (DEGs) from 1a3- and

1b3-transduced MEFs (1a3-DEGs and 1b3-DEGs) show

that various metabolic processes were highly ranked in

1a3-DEGs, whereas the genes involved in cell adhesion

and neuronal development were top-ranked in 1b3-DEGs

(Figure S3H). These data underscore the notion that 1b3

could not sufficiently activate the HepSC program and

has off-target effects, activating genes associated with ecto-

derm lineage.

We next investigated the transcriptional signatures of

1a3-and 1b3-transducedMEFs by comparing the cells’ tran-

scriptional regulatory network (TRN). To this end, we em-

ployed CellNet (Cahan et al., 2014), a computational

network biology platform providing a comprehensive

description of transcriptional networks constructed by

numerous interactions among highly ranked transcription

factors. We first generated a HepSC-TRN using both mouse

liver epithelial progenitor cells (LEPCs)-specific DEGs (Li

et al., 2006) andMEF-specific DEGs (Figure S3H).We found

twomajor distinct subnetwork modules in the HepSC-TRN

that are specific to LEPCs and MEFs, respectively (Figures

S3I and S3J). To evaluate the early reprogramming status
(C) TRNs in 1a3- and 1b3-iHepSCs. Yellow and red dashed circles repr
(D and E) Heatmap (D) and PCA (E) describing the gene expression pro
results are displayed on top of the heatmap. MEFs and LEPCs were us
(F and G) GO enrichment analysis of each iHepSC-specific DEGs.
of both 1a3- and 1b3-transduced MEFs, we applied the

DEGs (1a3 versus MEFs and 1b3 versus MEFs) on the

HepSC-TRN (Figure 3E). In line with our kinetic analysis

results (Figures 3C and 3D), 1a3-transducedMEFs displayed

faster activation of genes involved in the LEPC-specific

module compared with 1b3-transduced MEFs (Figure 3F).

These data support the notion that Hnf1a is the authentic

driving force for inducing hepatic stemness.

1a3-iHepSCs Are Transcriptionally Closer Than 1b3-

iHepSCs to LEPCs

To compare themolecular and cellular characteristics of the

established 1a3-iHepSCs with those of 1b3-iHepSCs, we

generated three clonal iHepSC lines from each combina-

tion. During clonal expansion, we were unable to observe

any significant difference in the proliferation rate and

clonal efficiency of the resultant iHepSCs, indicating that

the self-renewal capacities of both 1a3- and 1b3-iHepSCs

are comparable (Figures S4A and S4B). Notably, the major-

ity of stem cell markers were strongly activated in all 1a3-

iHepSC clones, whereas some epithelial and HepSC

markers were relatively less activated in most 1b3-iHepSC

lines (Figure 4A). Heatmap analysis also showed that 1a3-

iHepSCs displayed the relatively well-reprogrammed

pattern of gene transcription compared with the expres-

sion pattern of 1b3-iHepSCs, although these cells clustered

together (Figure 4B). Particularly, the fibroblast-specific

transcriptional signature was largely maintained in the

established 1b3-iHepSCs but nearly erased in 1a3-iHepSCs

(Figure 4B), indicating that Hnf1a plays a critical role not

only in the induction phase but also in the maturation

phase of the process of acquiring hepatic stemness.

We also performed TRN analysis by applying both the

1a3- and 1b3-specific DEGs defined from the established

iHepSC lines onto the HepSC-TRN (Figure 4C). Consistent

with our expression profiling (Figures 4A and 4B), the

expression levels of genes associated with LEPC-specific

modules were significantly higher in 1a3-iHepSCs than in

1b3-iHepSCs, resulting in the relatively closer clustering

of LEPCs and 1a3-iHepSCs (Figure 4D). Principal compo-

nent analysis also showed that the expression pattern of

the LEPC-specific module in 1a3-iHepSCs is very similar

to that in LEPCs (Figure 4E). To our surprise, GO analysis

showed that 1a3-specific DEGs were all associated with

typical hepatic features, such as distinct metabolic pro-

cesses (Figure 4F). However, non-hepatic events were

highly ranked in 1b3-DEGs (Figure 4G), supporting the

notion that 1b3 activates subsets of genes that do not
esent MEF- and LEPC-specific modules, respectively.
files of the LEPC-specific module in iHepSCs. Hierarchical clustering
ed as negative and positive controls, respectively.
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Figure 5. 1a3-iHepSCs Exhibit Enhanced Differentiation Potential into Cholangiocytes
(A) Expression of hepatocyte- and cholangiocyte-specific markers was analyzed by qPCR after 7 days of differentiation of iHepSCs. All the
values were normalized to those of MEFs and are presented as mean ± SD of triplicate values from three biological replicates. Paired t test:
*p < 0.05, **p < 0.01.
(B and C) In vitro functional analyses of iHepSC-derived hepatocytes by PAS staining (B) and ICG uptake assay (C). Scale bars, 100 mm.
(D and E) Comparison of secretion levels of serum albumin (D) and urea (E) from iHepSC-derived hepatocytes. MEFs and primary hepa-
tocytes were used as negative and positive controls, respectively. Data are presented as mean ± SD of triplicate values.

(legend continued on next page)
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belong to the hepatic lineage. Taken together, our data

indicate that Hnf1a is indeed a master factor for inducing

hepatic stemness.

Hnf1a Dramatically Enhances In Vitro Differentiation

Potential of iHepSCs into Cholangiocytes

To investigate the effect of Hnf1a and Hnf1b on the func-

tionality of iHepSCs, we compared the in vitro differentia-

tion potential of the two iHepSC lines. Following 7 days

of differentiation into hepatocytes, both iHepSC lines

had formed typical aggregates and exhibited increased

expression of mature hepatic genes but reduced expression

of both cholangiocyte- and stem cell-specific markers (Fig-

ures 5A and S5A–S5D). Moreover, the genes associated with

drug transport activity as well as the CYP450 genes were

significantly increased to a similar extent (Figures 5E and

5F). The additional set of in vitro functional studies clearly

suggests that the iHepSC lines from two distinct combina-

tions are comparable in their hepatic differentiation capac-

ity (Figures 5B–5E).

Next, we compared the differentiation potential of these

two iHepSC lines into cholangiocytes. Although both 1a3-

and 1b3-iHepSCs had formed cysts with typical apicobasal

polarity under the 3D culture conditions (Figure 5F), their

differentiation efficiency into cholangiocytes was dramati-

cally different (Figures 5G and 5H). Indeed, 1a3-iHepSCs

exhibited significantly increased numbers of Rho123-

transporting mature cysts (8.6-fold higher) compared

with 1b3-iHepSCs (Figure 5I). Furthermore, 1a3-iHepSC-

derived cholangiocytes strongly expressed cholangiocyte

markers to the level similar to that of bile duct tissues

(Figure 5J). However, 1b3-iHepSC-derived cholangiocytes

displayed relatively weak or no expression of thosemarkers

(Figure 5J). These data indicate that Hnf1a plays a crucial

role as a determinant of hepatic stemness, resulting in the

generation of iHepSCs with a dramatically enhanced chol-

angiocyte differentiation potential.

Notch Signaling-Mediated Secondary Conversion into

Cholangiocyte Progenitor-like Cells

Interestingly, 1a3-iHepSCs from different passages (P10

and P30) displayed distinct differentiation efficiency to-

wardmature cholangiocytes (Figure S6A). In contrast, their

hepatic differentiation was dramatically reduced upon
(F) Immunostaining images of F-actin in iHepSC-derived ductal cysts
(G) Transport of Rho123 into the central lumen of a ductal cyst deriv
(H and I) Image representation (H) and number (I) of Rho123-trans
iHepSCs. Three biological replicates of iHepSCs at passage 10 were u
different experiments. Two-tailed Student’s t test: **p < 0.01. Scale
(J) Expression of genes related to functional cholangiocytes was ana
tissues as a positive control and are presented as mean ± SD of trip
t test: *p < 0.05, ***p < 0.001.
further passaging, and completely abolished in 1a3-

iHepSCs from P30 (Figure S6B). To understand these

distinct passage-dependent differentiation patterns of

1a3-iHepSCs toward cholangiocytes and hepatocytes, we

determined the expression levels of hepatocyte and chol-

angiocyte markers. Although 1a3-iHepSCs from later pas-

sages (P20 and P30) displayed dramatically reduced levels

of hepatocyte markers (Figures 6A and 6B), expression

levels of cholangiocyte markers including CK19, Aqp1,

Cftr, Ggt, and Hnf b were stably maintained or further

enhanced even after long-term passaging (Figures 6A and

S6C), indicating that prolonged in vitro culture could

induce further commitment of 1a3-iHepSCs into iCPCs,

which predominantly differentiate into mature cholangio-

cytes (Figures S6A and S6B). However, 1b3-iHepSCs main-

tained their hepatic stemness even after long-term culture

(Figure 6A), suggesting that the secondary conversion of

iHepSCs into iCPCs is mediated by 1a3 but not 1b3. This

unique property of 1a3-iHepSCs offers a two-step strategy

for generating iCPCs.

Recent studies have described Notch signaling-mediated

differentiation of human PSCs into CPCs or mature chol-

angiocytes (Geisler et al., 2008; Ogawa et al., 2015; Sampa-

ziotis et al., 2015). Thus we next investigated whether the

secondary conversion of 1a3-iHepSCs into iCPCs is also

governed by Notch signaling. As a result, we found that

the expression levels of Notch and its targets (Notch2,

Jag1, and Hes1) were increased upon serial passaging of

1a3-iHepSCs (Figure S6C). However, the expression levels

of all the hepatic markers were stably maintained in

1a3-iHepSCs in the presence of DAPT, a g-secretase inhibi-

tor that blocks Notch signaling in vitro (Figures 6C–6E).

Furthermore, the differentiation of 1a3-iCPCs (at P20)

into mature cholangiocytes was completely blocked by

DAPT treatment (Figures S6D–S6F). Taken together, our

data indicate that the secondary conversion process of

iHepSCs into iCPCs as well as the unipotential differentia-

tion potential of iCPCs into mature cholangiocytes are

determined by Notch signaling (Figure 6F).

To further investigate the in vivo functionality of 1a3-

iCPCs, we used 3,5-diethoxycarbonyl-1,4-dihydrocollidine

(DDC)-fed mice, a well-knownmodel for activation of liver

progenitor cells and bile duct proliferation (Preisegger et al.,

1999), which allow for the spontaneous differentiation of
. Nuclei were stained with DAPI. Scale bars, 100 mm.
ed from iHepSCs. Scale bars, 100 mm.
porting cysts in the culture dish after 7 days of differentiation of
sed for the analysis. Data are presented as mean ± SD from three
bars, 100 mm.
lyzed by qPCR. All the values were normalized to those of bile duct
licate values from three biological replicates. Two-tailed Student’s
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liver progenitor cells into cholangiocytes. 1 3 106 GFP-

labeled 1a3-iCPCs (P20) with normal karyotype (Fig-

ure S7A) were transplanted into DDC-fed mice via intra-

splenic injection. After 4 weeks of transplantation, the

1a3-iCPCs had not only incorporated into pre-existing

bile ducts but also newly formed a significant number of

GFP+ ductal structures through bile ductular proliferation

without forming tumor (Figures 7A and S7B). However,

only a fewGFP+ ductal structures were observed in the liver

sections of mice transplanted with 1b3-iHepSCs that had

been maintained under the same culture conditions as

the 1a3-iCPCs (Figure 7A). We compared the differentia-

tion efficiency of both cell lines by counting the number

of GFP+ cholangiocytes per total number of cholangio-

cytes. The number of GFP+ ductal structures derived from

1a3-iCPCs was significantly higher than that from 1b3-

iHepSCs (Figure 7B), although the in vivo hepatic differen-

tiation potential of 1b3-iHepSCs overwhelmingly exceeds

that of 1a3-iCPCs (Figures S7C and S7D). Furthermore, a

larger number of most GFP+ 1a3-iCPC-derived cells

strongly expressed CK19 and the functional cholangio-

cyte-specific marker osteopontin (OPN), compared with

1b3-iHepSC-derived cells (Figures 7C–7F). Collectively,

these results clearly demonstrate that iCPCs that had con-

verted from 1a3-iHepSCs via Notch signaling pathway are

functionally mature.
DISCUSSION

To maintain several metabolic functions, the liver consists

of a few cell types that play distinct roles in hepatic homeo-

stasis (Altin and Bygrave, 1988). Although parenchymal

hepatocytes make up more than 85% of the liver, non-

parenchymal cell types are known to be involved in liver

regeneration (Michalopoulos, 2007). Indeed, several

cholangiocyte-related diseases such as cystic fibrosis, Ala-

gille syndrome, and primary sclerosing cholangitis exhibit

severe liver dysfunction caused by abnormality in the bile

ducts (Kobelska-Dubiel et al., 2014; Lindor et al., 2015;
Figure 6. Notch-Mediated Secondary Conversion of 1a3-iHepSCs
(A) Expression patterns of markers were evaluated in iHepSC lines from
MEFs and are presented as mean ± SD from four biological replicates a
(B) Immunofluorescence of 1a3-iHepSCs at different passages. Scale
(C and D) Expression of hepatocyte-specific (C) and cholangiocyte-spe
were cultured in the absence or presence of 20 nM DAPT, a g-secretas
P10 (P10) and from P10 to 20 (P20). All values were normalized to th
replicates. Paired t test: *p < 0.05, **p < 0.01; n.s., not significant.
(E) Immunofluorescence of iHepSCs cultured in the absence or presen
(F) Graphical abstract describing two-step conversion strategy for ge
hepatic stem cells by the ectopic expression of defined factors Hnf1a a
unipotent CPCs by spontaneous activation of Notch signaling.
Turnpenny and Ellard, 2012), indicating the need for a

novel approach for obtaining functional cholangiocytes

with high purity. For this, Yu et al. (2013) demonstrated

the direct generation of iHepSCs from mouse fibroblasts

using Hnf1b and Foxa3. Although the previous study

clearly characterized the bipotency of the iHepSCs, the

conversion efficiency into iHepSCs was too low (less than

0.5%), with unusually extremely low differentiation poten-

tial into cholangiocytes (less than 2%). In the current

study, we found that the combination of Hnf1a and

Foxa3 is sufficient for the robust generation of bipotential

iHepSCs with 3.2- to 6.8-fold increased conversion effi-

ciency compared with the previously defined combination

(Figure 3). Throughout our mechanistic and functional

studies, we observed that 1a3-iHepSCs are superior to

1b3-derived iHepSCs in their gene expression profile (Fig-

ures 4A, 4B, and 4D), conversion kinetics (Figures 3C and

3D), and both in vitro and in vivo differentiation potential

into cholangiocytes (Figures 5 and 7), indicating that

Hnf1a is a master factor for inducing hepatic stemness in

somatic cells.

Previous in vivo studiesmight indirectly suggest a distinct

role for each transcription factor (Hnf1a,Hnf1b, and Foxa3)

in the generation of iHepSCs. Foxa3 is a pioneer factor that

belongs to the Foxa subfamily of winged helix/forkhead

box transcription factors, which are known to guide

many transcription factors in accessing their targets during

liver development and regeneration (Kaestner et al., 1994;

Lee et al., 2005; Wangensteen et al., 2015), suggesting its

potential and essential role in iHepSC generation. How-

ever, Hnf1b is essential for the earliest step of hepatic bud

formation, as its depletion leads the embryonic lethality

(Coffinier et al., 2002; Lokmane et al., 2008), indicating

that Hnf1b plays a critical role in early liver development.

In contrast, Hnf1a is known to play a critical role in liver

regeneration (Fausto, 2004; Leu et al., 2001; Nagy et al.,

1994), despite its dispensable role in liver development

(Pontoglio et al., 1996). Upon liver injury, HNF1A is known

to directly bind to STAT3 and AP-1, resulting in the activa-

tion of several regeneration-associated hepatic genes (Leu
into Cholangiocyte Progenitor-like Cells
different passages by qPCR. All values were normalized to those of
t each passage. Paired t test: *p < 0.05, **p < 0.01, ***p < 0.001.
bar, 100 mm.
cific (D) markers in 1a3-iHepSCs was measured by qPCR. 1a3-iHepSCs
e inhibitor of Notch signaling, during 10 serial passages from P1 to
ose of MEFs and are presented as mean ± SD from three biological

ce of 20 nM DAPT. Scale bar, 100 mm.
nerating iCPCs. Fibroblasts were converted primarily to bipotential
nd Foxa3, then subjected to a secondary conversion process toward
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Figure 7. Robust Differentiation of 1a3-iCPCs into Mature Cholangiocytes
(A) Following transplantation, the engrafted GFP-labeled iCPCs and iHepSCs were differentiated into cholangiocytes (red arrowheads) in
the bile ducts of livers of DDC-fed mice. Scale bars, 100 mm.
(B) Efficiency of differentiation into cholangiocytes was measured by counting the number of GFP+ cholangiocytes per total number of
cholangiocytes in the liver sections (1a3-iCPCs: 58.9% ± 5.9% versus 1b3-iHepSCs: 2.9% ± 5.0%). Data are presented as mean ± SD from
three independent samples. Two-tailed Student’s t test: ***p < 0.001.
(C–F) The GFP+ cells in the bile ducts expressed mature cholangiocyte markers, CK19 (C and D) and OPN (E and F), as shown by immu-
nohistochemistry. The images were obtained from serially sectioned slides. Scale bars, 100 mm.
et al., 2001), suggesting that Hnf1a plays a key role in liver

regeneration. Importantly, Hnf1a, together with Foxa3, is

activated specifically during oval cell proliferation; oval
1534 Stem Cell Reports j Vol. 10 j 1522–1536 j May 8, 2018
cells are the prototype adult liver progenitor cell popula-

tion (Fausto, 2004; Nagy et al., 1994). Indeed, in the adult

livers undergoing rapid regeneration process after 70%



partial hepatectomy (PHx), the expression of Hnf1a

preceded that of Hnf1b; Hnf1a was immediately activated

after PHx, while Hnf1b was slowly and progressively upre-

gulated (Figure S7E). Considering that Hnf1a and Foxa3

together lead the robust induction of hepatic stemness (Fig-

ure 3), 1a3-mediated direct conversion process toward an

iHepSC state may share a similar pathway with the in vivo

liver regeneration event that is orchestrated by both

Hnf1a and Foxa3.

Furthermore, prolonged in vitro culture of 1a3-iHepSCs

could induce the Notch signaling-mediated secondary

conversion of 1a3-iHepSCs into unipotent iCPCs. Upon

in vitro differentiation of 1a3-iCPCs intomature cholangio-

cytes, we observed bile duct proliferation (Figure S7F), a

typical regenerative response to liver injury (Verdonk

et al., 2016), suggesting that 1a3-iCPCs hold clinical poten-

tial for modeling various forms of liver diseases caused by

cholangiocyte dysfunction. Further efforts in generating

human iHepSCs/iCPCs and applying this technology

for modeling genetic cholangiocyte-related diseases would

essentially be required for successfully translating iHepSC/

iCPC technology to the clinic.
EXPERIMENTAL PROCEDURES

Mice and Derivation of Fibroblasts
Allmice usedwere bred andhoused at themouse facility of Konkuk

University (KU) or at the Chinese Academy of Science (CAS).

Animal handling was in accordance with both the KU and CAS

animal protection guidelines. MEFs were derived on embryonic

day 13.5 after removing the head and all internal organs, including

the liver, fromC57/B6mouse strain embryos, and were cultured in

DMEM (Hyclone) containing 10% fetal bovine serum and 5 mL of

penicillin/streptomycin/glutamine (Invitrogen).
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Figure S1. Characterization of 1a3-iHepSCs. Related to Figure 1. 

(A) Morphology of established 1a3-iHepSCs, 1b3-iHepSCs, and 4a3-iHeps, as assessed by bright-field 

microscopy. Scale bars, 100 μm. (B) Morphology and marker expression of reprogrammed iHepSCs, 

partially reprogrammed cells, and non-reprogrammed fibroblasts. Scale bars, 100 μm. (C) Expression 

patterns of hepatocyte-, cholangiocyte-, and HepSC-specific markers were analyzed by RT-PCR. (D) 

Immunofluorescence of established 1a3-iHepSCs using antibodies directed against AFP, CK19, CK7, 

E-cadherin, ZO-1, LGR5, and/or SOX9. The nuclei were stained with DAPI. Scale bars, 100 μm. (E) 

Expression levels of hepatocyte-, cholangiocyte-, and HepSC-specific markers in three independent 

clonal 1a3-iHepSC lines were measured by qPCR. The expression levels were normalized to those of 

MEFs and are represented as mean ± SD of triplicate values. (F) Generation of adult mouse tail-tip 

fibroblast (TTF)-derived iHepSCs by 1a3. The TTF-derived 1a3-iHepSCs at passage 12 were stained 

using antibodies directed against AFP, ALB, CK19, and/or SOX9. The nuclei were stained with DAPI. 

Scale bars represent 100 μm. (G) Expression levels of hepatocyte-, cholangiocyte-, and HepSC-specific 

markers in TTF-derived 1a3-iHepSCs as measured by qPCR. The expression levels were normalized to 

those of MEFs and are represented as mean ± SD of triplicate values. (H) Conversion efficiency into 

iHepSCs after 2 weeks of transducing distinct factor combinations (1a2, 1a3, and 1a23). Data are 

represented as mean ± SD from three independent experiments. Two-tailed Student t-test: n.s., not 

significant. 

 



 

  



Figure S2. Differentiation potential of 1a3-iHepSCs. Related to Figure 2. 

(A) Morphology of 1a3-iHepSC‒derived hepatocytes was assessed by bright-field microscopy. (B) 

Expression patterns of hepatocyte- and cholangiocyte-specific markers were evaluated by RT-PCR. 

MEFs and primary hepatocytes were used as negative and positive controls, respectively. (C) 

Immunostaining images of F-actin in 1a3-iHepSC‒derived ductal cysts. Nuclei were stained with DAPI. 

(D) Transport of Rho123 into the central lumen of a ductal cyst. (E) Fluorescence microscopy images of 

1a3-iHepSC‒derived ductal cysts before and after FSK and IBMX stimulation in the absence or presence 

of the CFTR inhibitor. Scale bars, 100 μm. (F, G) Differentiation of TTF-iHepSCs into hepatocytes (F) 

and cholangiocytes (G). 

 



 

  



Figure S3. Faster induction of hepatic stemness by Foxa3 and Hnf1α. Related to Figure 3. 

(A, B) Proliferation rate of the cells (A) and expression levels of transgenes (B) were monitored in a 

time-course manner, on days 3, 6, 9, 12, and 15 after transduction of MEFs with the reprogramming 

factors. Data are represented as mean ± SD of triplicate values from three independent samples. Two-

way ANOVA, One-way ANOVA, respectively: *P<0.05; n.s., not significant. (C) Transcriptional kinetic 

analysis of CPM (carboxypeptidase M) during iHepSC generation. The levels were normalized to those 

of MEFs and are represented as mean ± SD of triplicate values. (D) Venn diagram representing the 

number of differentially expressed genes upon induction of each reprogramming cocktail, 1a3 (left) or 

1b3 (right), after 12 days of transduction, respectively. (E) Gene set enrichment analysis (GSEA) of 1a3- 

or 1b3-transduced cells on day 12 post-infection, which showed remarkable enrichment of diverse 

biological processes in Gene Ontology (GO) involved in liver functions. A peak shift to the left side 

indicates that genes involved in the processes are upregulated in 1a3- or 1b3-transduced cells, 

respectively. (F) A scatter plot of the expression patterns of genes in 1a3-transduced cells compared with 

those in 1b3-transduced cells on day 12 post-infection. Pearson correlation coefficient close to +1 

indicates that there is a strong positive correlation between the two samples. (G) Venn diagram describing 

the number of up-regulated genes in 1a3- and 1b3-transduced cells after 12 days of transduction (fold 

change >2; P<0.05). (H) GO enrichment analyses of differentially expressed genes (DEGs) by 2 fold 

between 1a3- and 1b3-transduced cells on day 12 post-infection. (I) A transcriptional regulatory network 

(TRN) extracted from CellNet using differentially expressed genes between liver epithelial progenitor 

cells (LEPCs) and MEFs by 4 fold. The TRN consists of distinct modules that are specific for MEF- and 

LEPC-specific modules, yellow and red dotted circles, respectively. (J) GO analyses of MEF- and LEPC-

specific modules. Biological process terms were analyzed based on the gene enrichment score: –log (P-

value). 



 

  



Figure S4. Characterization of 1a3- and 1b3-iHepSCs. Related to Figure 4. 

(A) Proliferation rate was monitored as the cells underwent a series of passages. Data are represented as 

mean ± SD of three biological samples. Two-tailed Student t-test: *P < 0.05. (B) Clonal efficiency (%) 

was measured after 7 days of sorting single cells into 96-well dishes by flow cytometry. Data are 

represented as mean ± SD of three biological replicates. Two-tailed Student t-test: *P<0.05.  

 



 

  



Figure S5. Comparison of hepatic differentiation potential between 1a3- and 1b3-iHepSCs. Related 

to Figure 5. 

(A) Morphology of 1a3-iHepSC‒ and 1b3-iHepSC‒derived hepatocytes after 7 days of hepatic 

differentiation. Scale bars, 100 μm. (B) Expression patterns of hepatocyte- and cholangiocyte-specific 

markers were evaluated by RT-PCR. MEFs, primary hepatocytes, and bile duct tissues were used as 

negative and positive controls, respectively. Data are represented as mean ± SD of triplicate values. (C) 

Immunofluorescence of 1a3-iHepSC‒derived hepatocytes after 7 days of iHepSC differentiation. 

Antibodies directed against ALB and CK19 were used. The nuclei were stained with DAPI. Scale bars, 

100 μm. (D) Expression values of genes related to liver-specific enzymes were analyzed by qPCR. All 

the values were normalized to those of MEFs. MEFs and primary hepatocytes were used as negative and 

positive controls, respectively. Data are represented as mean ± SD of triplicate values. (E) Expression of 

drug transporter‒related genes was measured in iHepSC-differentiated hepatocytes from three 

independent 1a3- and 1b3-iHepSC lines by qPCR. All the values were normalized to those of MEFs and 

are represented as mean ± SD of triplicate values. (F) Expression levels of Cyp450 enzymes in response 

to Cyp inducers (3-methylcholanthrene, rifampicin, and dexamethasone) were evaluated by qPCR after 

7 days of hepatic differentiation. All values were normalized to those of iHepSCs before differentiation, 

and are represented as mean ± SD of triplicate values. 

 



 

  



Figure S6. Notch-mediated secondary conversion of 1a3-iHepSCs into cholangiocyte progenitor‒

like cells. Related to Figure 6. 

(A) In vitro differentiation of 1a3-iHepSCs at early and late passages (P10 and P30), respectively. The 

number of Rho123-transporting cysts was measured on 7 days of differentiation. Data are represented as 

mean ± SD of triplicate values from five biological replicates. Paired t-test: *P<0.05. (B) Expression 

levels of the markers of mature hepatocytes (Alb, G6p) and cholangiocytes (CK19, Notch2) in 1a3-

iHepSCs (P10 and 30) were monitored by qPCR upon 7 days of hepatic differentiation. All the values 

were normalized to those of MEFs. Data are represented as mean ± SD of triplicate values from three 

biological replicates. Paired t-test: *P<0.05; n.s., not significant. (C) A box-and-whisker plot describing 

the expression levels of mature cholangiocyte-related genes measured by qPCR. Four biological 

replicates of 1a3-iHepSC lines on passage 10 (P10) were spontaneously differentiated into iCPCs during 

10 passages (P20). All the values were normalized to those of MEFs. Paired t-test: *P<0.05; **P<0.01; 

***P<0.001. (D-F) Transport of Rho123 into the central lumen of ductal cysts (D). 1a3-iCPCs pre-

incubated in the absence or presence of 20 nM of DAPT with more than five serial passages were treated 

with or without DAPT during cholangiocyte differentiation in vitro. The diameter (E) and the number 

(F) of Rho123-transporting cysts were measured upon 7 days of differentiation. The diameter of the cysts 

is displayed in a box-and-whisker plot (E) and the number of cysts is represented as mean ± SD (F) from 

three biological replicates. Paired t-test: *P<0.05; **P<0.01; ***P<0.001; n.s., not significant. 



 

  



Figure S7. Robust differentiation of iCPCs into mature cholangiocytes. Related to Figure 7. 

(A) Karyotype analysis of iHepSCs and iCPCs. Both iHepSCs (passage 2) and iCPCs (passage 20) 

exhibited normal karyotypes. (B) Teratoma assay using both iHepSCs and iCPCs. 1 x 106 of iHepSCs 

(passage 10) or iCPCs (passages 20 and 30) were injected into the left and right sides of NOD/SCID 

mice subcutaneously. Mouse embryonic stem cells were also injected as a positive control. Arrow heads 

depict teratomas observed after 8 weeks of transplantation. (C) Cumulative survival blot of Fah-/-/Rag-/- 

(F/R)- deficient mice after transplantation of iHepSCs. 1 × 106 of 1a3- and 1b3-iHepSCs were 

transplanted into Fah-/-/Rag-/- (F/R)- deficient mice. (D) Repopulation of FAH-positive cells was 

analyzed by immunostaining using antibody directed against FAH at 8 weeks after transplantation of 

both iCPCs and iHepSCs. Scale bars, 100 μm. (E) Expression patterns of endogenous Hnf1α and Hnf1β 

upon 70% partial hepatectomy (PHx). The liver tissues were collected at 2, 6, 12, 24, and 48 h after PHx. 

All the values are normalized to the level of healthy liver. (F) Morphology of cholangiocytes that had 

differentiated from iCPCs and iHepSCs in vitro. Scale bars, 100 μm. 



Table S1. Primers for analyzing the expression of marker genes. Related to Experimental 

procedures. 

Gene Name Genebank Number Primer sequences 

Aat NM_009243 
5’-CCTGCTAAACAGGCGCAGAA-3’ 

5’-TCGATGGTCAGCACAGCCTTA-3’ 

Afp NM_007423 
5’-CGTGATGCTTTGGGCGTTTA-3’ 

5’-GCCAAAAGGCTCACACCAAAG-3’ 

Alb NM_009654 
5’-AAACCTTGTCACTAGATGCAAAGACG-3’ 

5’-GGGTAGCCTGAGAAGGTTGTGG-3’ 

Hnf1a NM_009327 
5’-CCTGCTGCCATCCAACCATA-3’ 

5’-CCACGGTTACTGGGAAGAGGA-3’ 

Hnf4a NM_008261 
5’-GCCAACGATCACCAAGCAAG-3’ 

5’-TGAGGGTATGAGCCAGCAGAA-3’ 

E-cadherin NM_009864 
5’-TTCAAGAAGCTGGCGGACAT-3’ 

5’-CATCTCCCATGGTGCCACAC-3’ 

Ttr NM_013697 
5’-CCCTGCTCAGCCCATACTCCTA-3’ 

5’-TGCTTTGGCAAGATCCTGGT-3’ 

CK18 NM_010664 
5’-GATCGTGGATGGCAGAGTGG-3’ 

5’-TTCCCTCCTTCTCTGCCTCAGT-3’ 

G6p NM_008061 
5’-CGGATCCTGGGACAGACACA-3’ 

5’-CTTTGCATGGCGGTTGACTT-3’ 

CK19 NM_008471 
5’-CCCCAAGGCCATCTGAGCTA-3’ 

5’-GAGTAAACTTTTATCACCCCAGTCAGG-3’ 

CK7 NM_033073 
5’-CCTCAGGGCCTATTCCATCAA-3’ 

5’-GTCTCTCCAAGCCCACAGCTT-3’ 

Ggt NM_008116 
5’-CAGCTGCCTCAGACTCCAGAA-3’ 

5’-TTCCCATTCTCGTCCCTTGG-3’ 

Trop2 NM_020047 
5’-GAGATGAGAAGCGAACCTAGCTTGTAG-3’ 

5’-AACTTGTTTGTGGAGAGAGAAGGAAGA-3’ 

Epcam NM_008532 
5’-GGTGGTGTCATTAGCAGTCATCG-3’ 

5’-TGTGGATCTCACCCATCTCCTT-3’ 

Dlk1 NM_010052 
5’-GGATTCTGCGAGGCTGACAA-3’ 

5’-GCAGATGCACTGCCATGGTT-3’ 

Notch2 NM_010928 
5’-TTTGTGTCCCGCCCTTGTC-3’ 

5’-AGGGCATTTGCAGGAGAACTG-3’ 

Cftr NM_021050 
5’-CTGCTTGATGAGCCCAGTGC-3’ 

5’-TGAAGGGAGTCGTACTGCCAGA-3’ 

Aqp1 NM_00747 
5’-CGGTCATTTGGCTCTGCTGT-3’ 

5’-CACTGGTCCACACCTTCATGC-3’ 

Hnf1b NM_009330 
5’-GTGTCCACTGCAAGCCTGG-3’ 

5’-CCCAGAGACTGATGGTGTGGA-3’ 

Jag1 NM_013822 
5’-ACCTGCGTGGTCAATGGAGA-3’ 

5’-CACATTCGCACCGATACCAGTT-3’ 

Sstr2 NM_009217 
5’-TGCTAGAGAACACAGGGAAGCGA-3’ 

5’-TGTCGTAGTATGGCTCGGTCTGG-3’ 

Hes1 NM_008235 
5’-GTGAAGCACCTCCGGAACCT-3’ 

5’-CTCGTTCATGCACTCGCTGA-3’ 

Mdr1 NM_011075 
5’-CGAAGCAACATCAGCTCTGGA-3’ 

5’-CTTTGCTCCAGCCTGCACAC-3’ 

Gpbar1 NM_174985 
5’-GTGGCCACATTGCTCCTGTC-3’ 

5’-TGGCTCTTCCTCGAAGCACTC-3’ 

Sctr NM_001012322 
5’-CCATGGAGGTCCAGCTGTTCT-3’ 

5’-CGTTGCTGAAGGAGTTGCTGA-3’ 

Slc4a2 NM_009207 
5’-GCCTTTGCGCATGGTGGTACT-3’ 

5’-TGCCTCTGGACAGCAGCTACA-3’ 

Gapdh NM_008084 
5’-CCAATGTGTCCGTCGTGGAT-3’ 

5’-TGCCTGCTTCACCACCTTCT-3’ 

 



Table S2. Primers for analyzing the transgene expression levels. Related to Experimental 

procedures. 

Gene Name Primer sequences 

exo-Foxa3 
5’-GTGGTACCTCACCCTTACCG-3’ 

5’-TGGTGGGCACAGGATTCACT-3’ 

exo-Hnf1a 
5’-GTGGTACCTCACCCTTACCG-3’ 

5’-AGGCCTGGATCAGCACTTCC-3’ 

exo-Hnf1b 
5’-GTGGTACCTCACCCTTACCG-3’ 

5’-AGGCCTGGATCAGCACTTCC-3’ 

 



Supplemental Experimental Procedures 

 

Generation of iHepSCs  

To generate mouse iHepSCs, fibroblasts (5 × 104 cells) were infected with pMX retrovirus expressing 

the transcription factors in different combinations for 48 h. Prior to fibroblast transduction, the viral 

particles were produced for 48 h after transfecting 293T cells using a single pMX retroviral vector coding 

for one gene, together with the packaging plasmid pCL-Eco as previously described (Han et al., 2011; 

Han et al., 2012; Lim et al., 2016). The viral batches that showed transduction efficiency greater than 

80% using the control GFP retrovirus were first transduced to generate iHepSCs. The cells transduced 

with different combinations of factors were cultured in hepatic stem cell culture medium (HepSCM): 

DMEM/F-12 supplemented with 10% fetal bovine serum (FBS; Hyclone), 0.1 μM dexamethasone 

(Sigma), 10 mM nicotinamide (Sigma), 1% ITS (insulin-transferrin-selenium) premix (Gibco), 1X 

penicillin/streptomycin/glutamine (Invitrogen), and hepatocyte growth factor (HGF; Peprotech), and 

epidermal growth factor (EGF; Peprotech) each at a final concentration of 10 ng/ml on gelatin-coated 

dishes. 20 nM DAPT (N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a γ-

secretase inhibitor; Sigma), was added to HepSCM to block Notch signaling during cell culture. 

 

In vitro differentiation 

For the hepatic differentiation of iHepSCs, we employed a previously described procedure (Li et al., 

2006). Briefly, Matrigel (BD Bioscience) was added onto 6-well plate dishes (SPL) and solidified at 

37°C for 30 min. 1 × 105 of iHepSCs were plated on Matrigel-coated dishes with hepatic differentiation 

medium (HDM): DMEM/F12 basal medium supplemented with 10% FBS (Hyclone), 20 ng/ml 

Oncostatin M (OSM; Peprotech), 20 ng/ml EGF (Peprotech), 0.1 μM dexamethasone, and 10 mM 

nicotinamide. Differentiation was induced for 7 days and HDM was changed every 2 days. 

 

For the differentiation of iHepSCs into cholangiocytes, we used a 3D culture system as previously 

described (Li et al., 2010; Tanimizu et al., 2007). To induce branch structure formation during the 

differentiation of iHepSCs into cholangiocytes (Li et al., 2010), a mixture composed of 800 μl of 1.2 

mg/ml type 1 collagen (Corning), 100 μl of 10× DPBS, 20 μl of 1N NaOH, and 80 μl of pure water 

carefully mixed on ice was used. To achieve differentiation into a cyst form (Tanimizu et al., 2007), a 



mixture of 1.2 mg/ml Type 1 collagen and 40% Matrigel in 1:1 ratio (v/v) was itself mixed with an equal 

volume of 1 × 105 iHepSCs in cholangiocyte differentiation medium (CDM): DMEM/F12 basal medium 

supplemented with 10% FBS (HyClone) and 20 ng/ml HGF (Peprotech). Next, the cells in the mixture 

were transferred into 4-well plates, the mixture was left to solidify at 37°C for 30 min, and then fresh 

CDM was gently added onto the gel.  

 

In vitro functional analyses of iHepSC-derived hepatocytes  

Periodic acid-Schiff (PAS or Schiff’s reagent, Sigma) staining was performed following the 

manufacturer’s instructions. Briefly, cells were fixed with 10% formalin in 95% cold ethanol and rinsed 

for 1 min with slowly running tap water, and then exposed to periodic acid solution for 5 min at room 

temperature. After rinsing several times with distilled water, cells were treated with Schiff’s reagent for 

15 min at room temperature, and then washed with tap water for 5 min.  

 

For the indocyanine green (ICG, Sigma) uptake assay, ICG solution was added to the cultured cells at a 

final concentration of 1 mg/ml. The cells were incubated for 1 h at 37°C, washed three times with PBS, 

and then the cellular uptake of ICG was examined. For inducing the cellular release of ICG, cells were 

incubated in culture medium without ICG solution for 6 h at 37°C. 

 

To assess the expression levels of Cyp450 enzymes, the cells were cultured in HDM supplemented with 

50 μM 3-methylcholanthren (for Cyp1a2, Cyp3a11, Cyp3a13, and Cyp3a44), 25 μM rifampicin (for 

Cyp2a5), or 100 μM dexamethasone (for Cyp2d22) for 48 h at 37°C, and the expression levels were 

analyzed by qPCR. 

 

To measure the amounts of mouse albumin in the culture medium, the cells were cultured for 48 h. To 

measure the amount of urea in the culture medium, 1 mM ammonium chloride (Sigma) was added in the 

culture medium. Mouse albumin and urea were detected using a Mouse Albumin ELISA Kit (Shibayagi) 

and QuantiChrom Urea Assay Kit (BioAssay Systems), respectively, according to the manufacturers’ 

protocols. 

 

In vitro functional analyses of iHepSC- or iCPC-derived cholangiocytes  



1 ×105 of iHepSCs or iCPCs were differentiated into cholangiocytes for 7 days under the 3D culture 

condition as mentioned above. To assess MDR1 transporter activity in the cholangiocytes, the efflux of 

rhodamine 123 (Rho123; Molecular Probe) was evaluated by incubating iHepSC- or iCPC-derived cysts 

in culture medium containing 100 μM of Rho123 for 10 min. To test the effect of MDR1 inhibition, the 

culture medium was pretreated with 10 μM of verapamil (Ver; Sigma) for 30 min prior to treatment with 

Rho123. After washing the gels three times with the fresh medium, the number of cysts transporting 

Rho123 was counted under a fluorescence microscope.   

 

To monitor the CFTR-mediated fluid transport and cyst swelling in the cholangiocytes, a forskolin-

induced swelling assay was performed. The cysts were incubated in culture medium containing 10 μM 

calcein-AM (Thermo Fisher Scientific) for 30 min. Then, the gels were washed with fresh medium, and 

the cysts (at 0 h) were imaged under a fluorescence microscope. To stimulate the CFTR-mediated fluid 

transport and cyst swelling, the cysts were treated with 10 μM forskolin (FSK, a cAMP agonist; Enzo 

Life Sciences) and 100 μM IBMX (3-isobutyl-1-methylxanthine, nonselective PDE inhibitor; Sigma) for 

24 h. To inhibit CFTR activity, the cysts were pretreated with 30 μM CFTR inh-172 (a CFTR inhibitor; 

Sigma) or DMSO control for 3 h prior to the stimulation. After 24 h of FSK/IBMX treatment, the cysts 

were stained again and imaged under a fluorescence microscope. The total area of single cysts was 

calculated using ImageJ (NIH ver. 1.50) and the degree of swelling after 24 h of stimulation was 

quantified based on the unstimulated cyst size. 

 

Transplantation of iHepSCs or iCPCs into DDC-treated mice 

C57Bl6/J mice (8‒10 weeks) were fed a diet containing 0.1% DDC (wt/wt). After 5 days with the DDC 

diet, the mice were transplanted intrasplenically with 1 × 106 iHepSCs or iCPCs labeled with GFP and 

maintained on the same diet. Body weight was monitored every week post-transplantation. Recipient 

mice were sacrificed 4 weeks after transplantation. Three random serial sections from the left, middle, 

and right liver lobes were examined by immunohistochemistry to determine the donor cell repopulation.  

 

Gene expression analysis  

Total RNA was isolated using a Hybrid-RTM (GeneAll) and 1 μg of total RNA was transcribed into cDNA 

with Reverse Transcriptase (Applied Biosystems) according to the manufacturer’s instructions. 



Quantitative real-time PCR (qPCR) was performed with SYBR green PCR Master Mix (Applied 

Biosystems). Expression levels were normalized to Gapdh values and calibrated relative to appropriate 

control samples. All the qPCR experiments were performed on an ABI 7500 real-time PCR system 

(Applied Biosystems). 

 

RNA sequencing analysis 

Sequenced reads were mapped to UCSC mm10 Mus musculus genome using STAR 2.4.1c (Dobin et al., 

2013) with default parameter setting. Normalized read count values RPKMs (reads per kilobase of 

transcript per million mapped reads) were calculated for each gene using featureCounts (Liao et al., 2014) 

and edgeR 3.16.4 (Robinson et al., 2010). We added pseudo-value 1 to all original RPKM scores to 

compute fold changes. Genes with more than 4-fold changes in RPKM between samples were selected 

as representing differentially expressed genes (DEGs). To identify biological functions enriched in DEGs, 

we conducted hypergeometric tests for gene ontology biological process (GO:BP) terms. We also 

conducted gene set enrichment analysis (GSEA) for GOBP terms (Subramanian et al., 2005). Genes were 

sorted by their fold changes. We conducted GSEA-preranked with default parameters. A transcriptional 

regulatory network (TRN) was derived from CellNet (Cahan et al., 2014) by filtering for DEGs between 

MEFs and LEPCs. Network visualization and cluster analysis were conducted by Cytoscape 3.3.0 

(Shannon et al., 2003) and MCODE 1.4.1 (Bader and Hogue, 2003) with default parameter setting 

(Accession number: GSE97507). 

 

Gene ontology (GO) enrichment analysis  

The database for annotation, visualization, and integrated discovery (DAVID) tool was used to analyze 

significantly enriched GO terms (biological process, BP) with the threshold value of group membership 

counts being set at 2 and with the EASE score being set at 0.1. P-values of GO terms were calculated by 

Fisher's exact tests using EASE and corrected with the Benjamini method. The importance of annotation 

groups was described by –log (p-value). 

 

Immunocytochemistry  

For immunofluorescence staining, the cells were fixed with 4% paraformaldehyde (Sigma) for 20 min at 

room temperature and then blocked with DPBS (Hyclone) containing 0.3% Triton X-100 (Sigma) and 



5 % FBS (Hyclone) for 2 h at room temperature. The cells were then incubated with primary antibodies 

overnight at 4ºC, washed three times with DPBS, and then incubated with the appropriate fluorescence-

conjugated secondary antibody for 2 h at room temperature in the dark. Nuclei were stained with 

Hoechst33342 (Fluka). Cells were observed under a fluorescence microscope or a confocal laser 

scanning microscope (Fluoview FV1000-ASWv1.5; Tokyo, Japan). Primary antibodies used for 

immunofluorescence are as follows: rabbit anti-E-cadherin (Cell Signaling, 3195S, 1:200); mouse anti-

alpha-fetoprotein (R&D Systems, MAB1368, 1:100); mouse anti-Albumin (R&D Systems, MAB1455, 

1:100); mouse anti-HNF4A (Abcam, ab41898, 1:100); mouse anti-CK7 (Abcam, ab9021, 1:200); rabbit 

anti-CK19 (Abcam, ab52625, 1:250); goat anti-EPCAM (Santa Cruz, SC23788, 1:100); rabbit anti-

LGR5 (Abcam, ab75732, 1:200); rabbit anti-SOX9 (Novus Biologicals, NBP1-85551, 1:200); mouse 

anti-TROP2 (Santa Cruz, SC376181, 1:200); mouse anti-F-actin (Abcam, ab205, 1:200); and rabbit anti-

ZO-1 (Invitrogen, 40-2200, 1:200). 

 

Flow cytometric analysis 

For flow cytometry analysis, the cells were fixed with 4% paraformaldehyde (Sigma) for 20 min and 

then permeabilized with 0.3% Triton X-100 (Sigma) for 10 min at room temperature. After blocking 

with 0.3% bovine serum albumin (Sigma) for 15 min, the cells were incubated with EPCAM or E-

cadherin antibody for 30 min at 4°C. Cells were then incubated with secondary antibody for 20 min in 

the dark at 4°C. Cells were washed twice with DPBS containing 0.1% Tween20 (Sigma) and then 

analyzed by Calibur Flow Cytometer (Becton Dickinson). Primary antibodies used for the flow 

cytometry analyses are as follows: rabbit anti-E-cadherin (Cell Signaling, 3195S, 1:200) and rat anti-

EPCAM (e-bioscience, 14-5791-81, 1:50). Untransduced MEFs were used as a negative control. Data 

were analyzed using FlowJo software (Tree Star). 

 

Immunohistochemistry 

Liver tissue samples were fixed overnight in 4% neutral buffered paraformaldehyde (Solarbio), 

embedded in paraffin, cut into 3-μm thick sections, and placed on adhesion microscope slides. For 

immunohistochemistry, deparaffinized and rehydrated slides were subjected to autoclave antigen 

retrieval in a 10 mmol/L citric acid buffer (pH 6.0) and allowed to cool to room temperature. Slides were 

blocked with 3% H2O2 for 15 minutes, washed in phosphate-buffered saline, and then blocked with 5% 



normal horse serum in PBS. Slides were incubated with diluted primary antibodies overnight at 4°C. The 

following primary antibodies were used: mouse anti-GFP (Santa Cruz, SC9996, 1:200); rabbit anti-CK19 

(Abcam, ab52625, 1:100); and rabbit anti-OPN (Millipore, AB1870, 1:1000). Secondary antibodies were 

used according to Vectastain ABC kits (Vector Laboratories), followed by DAB staining (DAKO).  

 

Statistical analysis 

Data are reported as mean values from at least three replicates, with error bars denoting standard 

deviation. Statistical significance was evaluated with unpaired two-tailed Student’s t-test and/or paired 

t-test. Statistical analysis between diverse groups was conducted with one-way or two-way ANOVA 

using GraphPad Prism software. 
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