7 research outputs found

    PAK4 signaling in development and cancer

    Get PDF
    Our understanding of cancer biology has been evolving rapidly shaped by groundbreaking discoveries. We now understand that cancer is not one disease but many, and that tumors are not foreign objects in the human body but rather the result of changes in the previously normal tissues and organs. Thus, in order to ask fundamental questions and dissect the complexity of cancer it is essential to grasp how the healthy organs develop and function and the cellular and molecular mechanisms involved. The serine/threonine PAKs are signaling hubs with proven roles in development and disease. Specifically, they are important to several hallmarks of cancer. Thus, the family in general, and PAK4 in particular, is increasingly attracting the interest of the scientific community. In this thesis I have explored the role of PAK4 in normal organ development and cancer. Novel mouse models with PAK4 depletion in the mammary gland and in the pancreas have been established and characterized in Paper I and Paper II. The absence of major tissue abnormalities upon PAK4 depletion in the mammary epithelium allowed me to use this model to study the role of PAK4 in tumorigenesis in vivo, in Paper III, and a counterpart mouse model with PAK4 overexpression in the mammary epithelium was also generated. These complementary in vivo setups showed that PAK4-overexpressing mammary glands occasionally developed mammary tumors while PAK4 abrogation impaired PyMT-driven mammary tumorigenesis. Extensive in vitro experiments, using state of the art techniques, then supported a model in which PAK4 confers selective advantages to cancer cells by overcoming the senescence barrier. This, in turn, constitutes a selective vulnerability of cancer cells that become susceptible to a senescence-like response upon PAK4 inhibition. The data presented also demonstrates a crosstalk between PAK4 and NF-κB signaling, and a direct interaction and phosphorylation site within the REL-homology domain of RELB is found to be relevant for tuning RELB-mediated transcription and cancer cell proliferation via C/EBPβ. Importantly, these findings were largely supported by correlations in clinical data and validated ex vivo in patient-derived cells, thus highlighting PAK4 as an attractive therapeutic opportunity in cancer. Therefore, this thesis contributes to a better understanding of the mechanisms that govern breast tumorigenesis, with hopes that such knowledge will prove relevant in cancer prognosis and treatment

    Scalable Coverage Maintenance for Dense Wireless Sensor Networks

    Get PDF
    Owing to numerous potential applications, wireless sensor networks have been attracting significant research effort recently. The critical challenge that wireless sensor networks often face is to sustain long-term operation on limited battery energy. Coverage maintenance schemes can effectively prolong network lifetime by selecting and employing a subset of sensors in the network to provide sufficient sensing coverage over a target region. We envision future wireless sensor networks composed of a vast number of miniaturized sensors in exceedingly high density. Therefore, the key issue of coverage maintenance for future sensor networks is the scalability to sensor deployment density. In this paper, we propose a novel coverage maintenance scheme, scalable coverage maintenance (SCOM), which is scalable to sensor deployment density in terms of communication overhead (i.e., number of transmitted and received beacons) and computational complexity (i.e., time and space complexity). In addition, SCOM achieves high energy efficiency and load balancing over different sensors. We have validated our claims through both analysis and simulations

    Antiphospholipid syndrome

    No full text
    Antiphospholipid syndrome (APS) is an autoimmune disease characterized by the presence of antiphospholipid antibodies, such as lupus anticoagulant, anticardiolipin antibodies and anti-beta 2-glycoprotein 1 antibodies. APS can present with a variety of clinical phenotypes, including thrombosis in the veins, arteries and microvasculature as well as obstetrical complications. The pathophysiological hallmark is thrombosis, but other factors such as complement activation might be important. Prevention of thrombotic manifestations associated with APS includes lifestyle changes and, in individuals at high risk, low-dose aspirin. Prevention and treatment of thrombotic events are dependent mainly on the use of vitamin K antagonists. Immunosuppression and anticomplement therapy have been used anecdotally but have not been adequately tested. Pregnancy morbidity includes unexplained recurrent early miscarriage, fetal death and late obstetrical manifestation such as pre-eclampsia, premature birth or fetal growth restriction associated with placental insufficiency. Current treatment to prevent obstetrical morbidity is based on low-dose aspirin and/or low-molecular- weight heparin and has improved pregnancy outcomes to achieve successful live birth in > 70% of pregnancies. Although hydroxychloroquine and pravastatin might further improve pregnancy outcomes, prospective clinical trials are required to confirm these findings

    Fatty liver: Biochemical and clinical considerations

    No full text
    corecore