199 research outputs found

    Solving renewable energy source selection problems using a q-rung orthopair fuzzy-based integrated decision-making approach

    Full text link
    This paper proposes an integrated decision-making framework for the systematic selection of a renewable energy source (RES) from a set of RESs based on sustainability attributes. A real case study of RES selection in Karnataka, India, using the framework is demonstrated, and the results are compared with state-of-the-art methods. The main reason for developing this framework is to handle uncertainty and vagueness effectively by reducing human intervention. Systematic selection of RESs also reduces inaccuracies and promotes rational decision-making. In this paper, q-rung orthopair fuzzy information is adopted to minimize subjective randomness by providing a flexible and generalized preference style. Further, the study found systematic approaches for imputing missing values, calculating attributes’ and decision-makers’ weights, aggregation or preferences, and prioritizing RESs, which are integrated into the framework. Comparing the proposed framework with state-of-the-art-methods shows that (i) biomass and solar are suitable RESs for the process under consideration in Karnataka, (ii) the proposed framework is consistent with state-of-the-art methods, (iii) the proposed framework is sufficiently stable even after weights of attributes and decision makers are altered, and (iv) the proposed framework produces broad and sensible rank values for efficient backup management. These results validate the significance of the proposed framework

    Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus

    Get PDF
    Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses

    Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection

    Get PDF
    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio

    Excessive Biologic Response to IFNβ Is Associated with Poor Treatment Response in Patients with Multiple Sclerosis

    Get PDF
    Interferon-beta (IFNβ) is used to inhibit disease activity in multiple sclerosis (MS), but its mechanisms of action are incompletely understood, individual treatment response varies, and biological markers predicting response to treatment have yet to be identified.he relationship between the molecular response to IFNβ and treatment response was determined in 85 patients using a longitudinal design in which treatment effect was categorized by brain magnetic resonance imaging as good (n = 70) or poor response (n = 15). Molecular response was quantified using a customized cDNA macroarray assay for 166 IFN-regulated genes (IRGs).The molecular response to IFNβ differed significantly between patients in the pattern and number of regulated genes. The molecular response was strikingly stable for individuals for as long as 24 months, however, suggesting an individual ‘IFN response fingerprint’. Unexpectedly, patients with poor response showed an exaggerated molecular response. IRG induction ratios demonstrated an exaggerated molecular response at both the first and 6-month IFNβ injections.MS patients exhibit individually unique but temporally stable biological responses to IFNβ. Poor treatment response is not explained by the duration of biological effects or the specific genes induced. Rather, individuals with poor treatment response have a generally exaggerated biological response to type 1 IFN injections. We hypothesize that the molecular response to type I IFN identifies a pathogenetically distinct subset of MS patients whose disease is driven in part by innate immunity. The findings suggest a strategy for biologically based, rational use of IFNβ for individual MS patients

    Simulating Microdosimetry in a Virtual Hepatic Lobule

    Get PDF
    The liver plays a key role in removing harmful chemicals from the body and is therefore often the first tissue to suffer potentially adverse consequences. To protect public health it is necessary to quantitatively estimate the risk of long-term low dose exposure to environmental pollutants. Animal testing is the primary tool for extrapolating human risk but it is fraught with uncertainty, necessitating novel alternative approaches. Our goal is to integrate in vitro liver experiments with agent-based cellular models to simulate a spatially extended hepatic lobule. Here we describe a graphical model of the sinusoidal network that efficiently simulates portal to centrilobular mass transfer in the hepatic lobule. We analyzed the effects of vascular topology and metabolism on the cell-level distribution following oral exposure to chemicals. The spatial distribution of metabolically inactive chemicals was similar across different vascular networks and a baseline well-mixed compartment. When chemicals were rapidly metabolized, concentration heterogeneity of the parent compound increased across the vascular network. As a result, our spatially extended lobule generated greater variability in dose-dependent cellular responses, in this case apoptosis, than were observed in the classical well-mixed liver or in a parallel tubes model. The mass-balanced graphical approach to modeling the hepatic lobule is computationally efficient for simulating long-term exposure, modular for incorporating complex cellular interactions, and flexible for dealing with evolving tissues

    Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera)

    Get PDF
    The external morphology and distribution of the antennal sensilla of 21 species from five families of semiaquatic bugs (Gerromorpha) were examined using scanning electron microscopy. Nine main types were distinguished based on their morphological structure: sensilla trichoidea, sensilla chaetica, sensilla leaflike, sensilla campaniformia, sensilla coeloconica, sensilla ampullacea, sensilla basiconica, sensilla placoidea and sensilla bell-mouthed. The specific morphological structure of one type of sensilla (bell-mouthed sensilla) was observed only in Aquarius paludum. Several subtypes of sensilla are described, differentiated by number, location and type of sensillum characteristic for each examined taxon. The present study provides new data about the morphology and distribution of the antennal sensilla in Gerromorpha

    Proton decay and new contribution to 0ν2β decay in SO(10) with low-mass Z′ boson, observable n − n ¯ n−n‾ n-\overline{n} oscillation, lepton flavor violation, and rare kaon decay

    Full text link

    A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI

    Get PDF
    • …
    corecore